[FEAT][Flow.run() img = None for conditional img inputs, BaseMultiModalModel, and multi modal swarms of manufacturing agents

pull/197/head
Kye 1 year ago
parent f895497f88
commit a92a6a5c13

@ -1,9 +1,21 @@
import os
from dotenv import load_dotenv
# Import the OpenAIChat model and the Flow struct
from swarms.models import OpenAIChat
from swarms.structs import Flow
# Load the environment variables
load_dotenv()
# Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY")
# Initialize the language model
llm = OpenAIChat(
temperature=0.5,
openai_api_key=api_key,
)

@ -1,5 +1,8 @@
from swarms.structs import Flow
from swarms.models.gpt4_vision_api import GPT4VisionAPI
from swarms.prompts.multi_modal_autonomous_instruction_prompt import (
MULTI_MODAL_AUTO_AGENT_SYSTEM_PROMPT_1,
)
llm = GPT4VisionAPI()
@ -10,6 +13,7 @@ img = "images/swarms.jpeg"
## Initialize the workflow
flow = Flow(
llm=llm,
sop=MULTI_MODAL_AUTO_AGENT_SYSTEM_PROMPT_1,
max_loops="auto",
)

@ -0,0 +1,7 @@
"""
Idea 2 img
task -> gpt4 text -> dalle3 img -> gpt4vision img + text analyze img -> dalle3 img -> loop
"""
from swarms.models.gpt4_vision_api import GPT4VisionAPI

@ -0,0 +1,15 @@
"""
Swarm of multi modal autonomous agents for manufacturing!
---------------------------------------------------------
Health Security agent: Agent that monitors the health of working conditions: input image of factory output: health safety index 0.0 - 1.0 being the highest
Quality Control agent: Agent that monitors the quality of the product: input image of product output: quality index 0.0 - 1.0 being the highest
Productivity agent: Agent that monitors the productivity of the factory: input image of factory output: productivity index 0.0 - 1.0 being the highest
Safety agent: Agent that monitors the safety of the factory: input image of factory output: safety index 0.0 - 1.0 being the highest
Security agent: Agent that monitors the security of the factory: input image of factory output: security index 0.0 - 1.0 being the highest
Sustainability agent: Agent that monitors the sustainability of the factory: input image of factory output: sustainability index 0.0 - 1.0 being the highest
Efficiency agent: Agent that monitors the efficiency of the factory: input image of factory output: efficiency index 0.0 - 1.0 being the highest
Flow:
health security agent -> quality control agent -> productivity agent -> safety agent -> security agent -> sustainability agent -> efficiency agent
"""

@ -1,3 +1,4 @@
from abc import abstractmethod
import asyncio
import base64
import concurrent.futures
@ -7,8 +8,8 @@ from io import BytesIO
from typing import List, Optional, Tuple
import requests
from ABC import abstractmethod
from PIL import Image
from termcolor import colored
class BaseMultiModalModel:
@ -37,7 +38,6 @@ class BaseMultiModalModel:
self.retries = retries
self.chat_history = []
@abstractmethod
def __call__(self, text: str, img: str):
"""Run the model"""
@ -101,7 +101,6 @@ class BaseMultiModalModel:
for result in results:
print(result)
def run_batch(self, tasks_images: List[Tuple[str, str]]) -> List[str]:
"""Process a batch of tasks and images"""
with concurrent.futures.ThreadPoolExecutor() as executor:
@ -213,3 +212,12 @@ class BaseMultiModalModel:
"""Print Beautifully with termcolor"""
content = colored(content, color)
print(content)
def stream(self, content: str):
"""Stream the output
Args:
content (str): _description_
"""
for chunk in content:
print(chunk)

@ -1,6 +1,7 @@
import logging
import asyncio
import base64
from typing import Optional
import concurrent.futures
from termcolor import colored
import json
@ -12,6 +13,13 @@ import aiohttp
import requests
from dotenv import load_dotenv
try:
import cv2
except ImportError:
print("OpenCV not installed. Please install OpenCV to use this model.")
raise ImportError
# Load environment variables
load_dotenv()
openai_api_key = os.getenv("OPENAI_API_KEY")
@ -59,7 +67,8 @@ class GPT4VisionAPI:
max_workers: int = 10,
max_tokens: str = 300,
openai_proxy: str = "https://api.openai.com/v1/chat/completions",
beautify: bool = False
beautify: bool = False,
streaming_enabled: Optional[bool] = False,
):
super().__init__()
self.openai_api_key = openai_api_key
@ -69,6 +78,7 @@ class GPT4VisionAPI:
self.max_tokens = max_tokens
self.openai_proxy = openai_proxy
self.beautify = beautify
self.streaming_enabled = streaming_enabled
if self.logging_enabled:
logging.basicConfig(level=logging.DEBUG)
@ -123,14 +133,101 @@ class GPT4VisionAPI:
out = response.json()
content = out["choices"][0]["message"]["content"]
if self.streaming_enabled:
content = self.stream_response(content)
else:
pass
if self.beautify:
content = colored(content, "cyan")
print(content)
else:
print(content)
except Exception as error:
print(f"Error with the request: {error}")
raise error
def video_prompt(self, frames):
"""
SystemPrompt is a class that generates a prompt for the user to respond to.
The prompt is generated based on the current state of the system.
Parameters
----------
frames : list
A list of base64 frames
Returns
-------
PROMPT : str
The system prompt
Examples
--------
>>> from swarms.models import GPT4VisionAPI
>>> llm = GPT4VisionAPI()
>>> video = "video.mp4"
>>> base64_frames = llm.process_video(video)
>>> prompt = llm.video_prompt(base64_frames)
>>> print(prompt)
"""
PROMPT = f"""
These are frames from a video that I want to upload. Generate a compelling description that I can upload along with the video:
{frames}
"""
return PROMPT
def stream_response(self, content: str):
"""Stream the response of the output
Args:
content (str): _description_
"""
for chunk in content:
print(chunk)
def process_video(self, video: str):
"""
Process a video into a list of base64 frames
Parameters
----------
video : str
The path to the video file
Returns
-------
base64_frames : list
A list of base64 frames
Examples
--------
>>> from swarms.models import GPT4VisionAPI
>>> llm = GPT4VisionAPI()
>>> video = "video.mp4"
>>> base64_frames = llm.process_video(video)
"""
video = cv2.VideoCapture(video)
base64_frames = []
while video.isOpened():
success, frame = video.read()
if not success:
break
_, buffer = cv2.imencode(".jpg", frame)
base64_frames.append(base64.b64encode(buffer).decode("utf-8"))
video.release()
print(len(base64_frames), "frames read.")
for img in base64_frames:
base64.b64decode(img.encode("utf-8"))
def __call__(self, task: str, img: str):
"""Run the model."""
try:
@ -168,10 +265,17 @@ class GPT4VisionAPI:
out = response.json()
content = out["choices"][0]["message"]["content"]
if self.streaming_enabled:
content = self.stream_response(content)
else:
pass
if self.beautify:
content = colored(content, "cyan")
print(content)
else:
print(content)
except Exception as error:
print(f"Error with the request: {error}")
raise error

@ -99,7 +99,9 @@ class WhisperX:
print("The key 'segments' is not found in the result.")
def transcribe(self, audio_file):
model = whisperx_model.load_model("large-v2", self.device, self.compute_type)
model = whisperx_model.load_model(
"large-v2", self.device, self.compute_type
)
audio = whisperx_model.load_audio(audio_file)
result = model.transcribe(audio, batch_size=self.batch_size)

@ -498,7 +498,7 @@ class Flow:
)
print(error)
def run(self, task: str, img: Optional[str], **kwargs):
def run(self, task: Optional[str], img: Optional[str] = None, **kwargs):
"""
Run the autonomous agent loop
@ -528,7 +528,11 @@ class Flow:
self.print_dashboard(task)
loop_count = 0
# While the max_loops is auto or the loop count is less than the max_loops
while self.max_loops == "auto" or loop_count < self.max_loops:
# Loop count
loop_count += 1
print(
colored(f"\nLoop {loop_count} of {self.max_loops}", "blue")

@ -1,15 +1,14 @@
import logging
import os
import warnings
def disable_logging():
warnings.filterwarnings("ignore", category=UserWarning)
# disable tensorflow warnings
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
# Set the logging level for the entire module
logging.basicConfig(level=logging.WARNING)
@ -20,6 +19,12 @@ def disable_logging():
except Exception as error:
print(f"Pytorch logging not disabled: {error}")
for logger_name in ['tensorflow', 'h5py', 'numexpr', 'git', 'wandb.docker.auth']:
for logger_name in [
"tensorflow",
"h5py",
"numexpr",
"git",
"wandb.docker.auth",
]:
logger = logging.getLogger(logger_name)
logger.setLevel(logging.WARNING) # Supress DEBUG and info logs

Loading…
Cancel
Save