parent
9c4cbca46e
commit
a9f0e1aa86
@ -1,35 +0,0 @@
|
||||
mkdocs
|
||||
mkdocs-material
|
||||
mkdocs-glightbox
|
||||
mkdocs-git-authors-plugin
|
||||
mkdocs-git-revision-date-plugin
|
||||
mkdocs-git-committers-plugin
|
||||
mkdocstrings
|
||||
mike
|
||||
mkdocs-jupyter
|
||||
mkdocs-git-committers-plugin-2
|
||||
mkdocs-git-revision-date-localized-plugin
|
||||
mkdocs-redirects
|
||||
mkdocs-material-extensions
|
||||
mkdocs-simple-hooks
|
||||
mkdocs-awesome-pages-plugin
|
||||
mkdocs-versioning
|
||||
mkdocs-mermaid2-plugin
|
||||
mkdocs-include-markdown-plugin
|
||||
mkdocs-enumerate-headings-plugin
|
||||
mkdocs-autolinks-plugin
|
||||
mkdocs-minify-html-plugin
|
||||
mkdocs-autolinks-plugin
|
||||
|
||||
# Requirements for core
|
||||
jinja2~=3.1
|
||||
markdown~=3.7
|
||||
mkdocs-material-extensions~=1.3
|
||||
pygments~=2.18
|
||||
pymdown-extensions~=10.13
|
||||
|
||||
# Requirements for plugins
|
||||
babel~=2.16
|
||||
colorama~=0.4
|
||||
paginate~=0.5
|
||||
regex>=2022.4
|
@ -1,28 +0,0 @@
|
||||
from swarms import Agent
|
||||
from swarms.prompts.finance_agent_sys_prompt import (
|
||||
FINANCIAL_AGENT_SYS_PROMPT,
|
||||
)
|
||||
|
||||
# Initialize the agent
|
||||
agent = Agent(
|
||||
agent_name="Financial-Analysis-Agent",
|
||||
agent_description="Personal finance advisor agent",
|
||||
system_prompt=FINANCIAL_AGENT_SYS_PROMPT,
|
||||
max_loops=1,
|
||||
model_name="gpt-4o",
|
||||
dynamic_temperature_enabled=True,
|
||||
user_name="swarms_corp",
|
||||
retry_attempts=3,
|
||||
context_length=8192,
|
||||
return_step_meta=False,
|
||||
output_type="str", # "json", "dict", "csv" OR "string" "yaml" and
|
||||
auto_generate_prompt=False, # Auto generate prompt for the agent based on name, description, and system prompt, task
|
||||
max_tokens=4000, # max output tokens
|
||||
saved_state_path="agent_00.json",
|
||||
interactive=False,
|
||||
)
|
||||
|
||||
agent.run(
|
||||
"Create a table of super high growth opportunities for AI. I have $40k to invest in ETFs, index funds, and more. Please create a table in markdown.",
|
||||
all_cores=True,
|
||||
)
|
@ -1,143 +0,0 @@
|
||||
[build-system]
|
||||
requires = ["poetry-core>=1.0.0"]
|
||||
build-backend = "poetry.core.masonry.api"
|
||||
|
||||
|
||||
[tool.poetry]
|
||||
name = "swarms"
|
||||
version = "6.8.3"
|
||||
description = "Swarms - TGSC"
|
||||
license = "MIT"
|
||||
authors = ["Kye Gomez <kye@apac.ai>"]
|
||||
homepage = "https://github.com/kyegomez/swarms"
|
||||
documentation = "https://docs.swarms.world"
|
||||
readme = "README.md"
|
||||
repository = "https://github.com/kyegomez/swarms"
|
||||
keywords = [
|
||||
"artificial intelligence",
|
||||
"deep learning",
|
||||
"optimizers",
|
||||
"Prompt Engineering",
|
||||
"swarms",
|
||||
"agents",
|
||||
"llms",
|
||||
"transformers",
|
||||
"multi-agent",
|
||||
"swarms of agents",
|
||||
"Enterprise-Grade Agents",
|
||||
"Production-Grade Agents",
|
||||
"Agents",
|
||||
"Multi-Grade-Agents",
|
||||
"Swarms",
|
||||
"Transformers",
|
||||
"LLMs",
|
||||
"Prompt Engineering",
|
||||
"Agents",
|
||||
"Generative Agents",
|
||||
"Generative AI",
|
||||
"Agent Marketplace",
|
||||
"Agent Store",
|
||||
"quant",
|
||||
"finance",
|
||||
"algorithmic trading",
|
||||
"portfolio optimization",
|
||||
"risk management",
|
||||
"financial modeling",
|
||||
"machine learning for finance",
|
||||
"natural language processing for finance",
|
||||
]
|
||||
classifiers = [
|
||||
"Development Status :: 4 - Beta",
|
||||
"Intended Audience :: Developers",
|
||||
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
||||
"License :: OSI Approved :: MIT License",
|
||||
"Programming Language :: Python :: 3.10",
|
||||
]
|
||||
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<4.0"
|
||||
# torch = ">=2.1.1,<3.0"
|
||||
# transformers = ">= 4.39.0, <5.0.0"
|
||||
asyncio = ">=3.4.3,<4.0"
|
||||
toml = "*"
|
||||
pypdf = "5.1.0"
|
||||
swarm-models = "*"
|
||||
loguru = "*"
|
||||
pydantic = "*"
|
||||
tenacity = "*"
|
||||
psutil = "*"
|
||||
sentry-sdk = "*"
|
||||
python-dotenv = "*"
|
||||
PyYAML = "*"
|
||||
docstring_parser = "0.16" # TODO:
|
||||
tiktoken = "*"
|
||||
networkx = "*"
|
||||
aiofiles = "*"
|
||||
clusterops = "*"
|
||||
# chromadb = "*"
|
||||
rich = "*"
|
||||
# sentence-transformers = "*"
|
||||
|
||||
|
||||
# [tool.poetry.extras]
|
||||
# # Extra for NLP-related functionalities
|
||||
# nlp = [
|
||||
# "torch>=2.1.1,<3.0",
|
||||
# "transformers>=4.39.0,<5.0.0",
|
||||
# "sentence-transformers",
|
||||
# "swarm-models",
|
||||
# ]
|
||||
|
||||
# # Extra for database-related functionalities
|
||||
# db = ["chromadb"]
|
||||
|
||||
# # All optional dependencies for convenience
|
||||
# all = [
|
||||
# "torch>=2.1.1,<3.0",
|
||||
# "transformers>=4.39.0,<5.0.0",
|
||||
# "sentence-transformers",
|
||||
# "chromadb",
|
||||
# "swarm-models"
|
||||
# ]
|
||||
|
||||
|
||||
|
||||
[tool.poetry.scripts]
|
||||
swarms = "swarms.cli.main:main"
|
||||
|
||||
|
||||
[tool.poetry.group.lint.dependencies]
|
||||
black = ">=23.1,<25.0"
|
||||
ruff = ">=0.5.1,<0.8.5"
|
||||
types-toml = "^0.10.8.1"
|
||||
types-pytz = ">=2023.3,<2025.0"
|
||||
types-chardet = "^5.0.4.6"
|
||||
mypy-protobuf = "^3.0.0"
|
||||
|
||||
|
||||
[tool.poetry.group.test.dependencies]
|
||||
pytest = "^8.1.1"
|
||||
|
||||
[tool.ruff]
|
||||
line-length = 70
|
||||
|
||||
[tool.black]
|
||||
target-version = ["py38"]
|
||||
line-length = 70
|
||||
include = '\.pyi?$'
|
||||
exclude = '''
|
||||
/(
|
||||
\.git
|
||||
| \.hg
|
||||
| \.mypy_cache
|
||||
| \.tox
|
||||
| \.venv
|
||||
| _build
|
||||
| buck-out
|
||||
| build
|
||||
| dist
|
||||
| docs
|
||||
)/
|
||||
'''
|
||||
|
@ -1,29 +0,0 @@
|
||||
|
||||
torch>=2.1.1,<3.0
|
||||
transformers>=4.39.0,<5.0.0
|
||||
asyncio>=3.4.3,<4.0
|
||||
toml
|
||||
pypdf==5.1.0
|
||||
ratelimit==2.2.1
|
||||
loguru
|
||||
pydantic==2.8.2
|
||||
tenacity
|
||||
rich
|
||||
psutil
|
||||
sentry-sdk
|
||||
python-dotenv
|
||||
PyYAML
|
||||
docstring_parser==0.16
|
||||
black>=23.1,<25.0
|
||||
ruff>=0.0.249,<0.8.5
|
||||
types-toml>=0.10.8.1
|
||||
types-pytz>=2023.3,<2025.0
|
||||
types-chardet>=5.0.4.6
|
||||
mypy-protobuf>=3.0.0
|
||||
pytest>=8.1.1
|
||||
networkx
|
||||
aiofiles
|
||||
clusterops
|
||||
gradio
|
||||
litellm
|
||||
python-dotenv
|
@ -1,414 +0,0 @@
|
||||
import asyncio
|
||||
import csv
|
||||
from datetime import datetime
|
||||
import os
|
||||
import uuid
|
||||
from typing import Dict, List, Union
|
||||
|
||||
import aiofiles
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from swarms.structs.agent import Agent
|
||||
from swarms.structs.base_swarm import BaseSwarm
|
||||
from swarms.telemetry.capture_sys_data import log_agent_data
|
||||
from swarms.utils.file_processing import create_file_in_folder
|
||||
from swarms.utils.loguru_logger import initialize_logger
|
||||
|
||||
logger = initialize_logger(log_folder="spreadsheet_swarm")
|
||||
|
||||
# Replace timestamp-based time with a UUID for file naming
|
||||
run_id = uuid.uuid4().hex # Unique identifier for each run
|
||||
|
||||
class AgentOutput(BaseModel):
|
||||
agent_name: str
|
||||
task: str
|
||||
result: str
|
||||
timestamp: str
|
||||
|
||||
|
||||
class SwarmRunMetadata(BaseModel):
|
||||
run_id: str = Field(
|
||||
default_factory=lambda: f"spreadsheet_swarm_run_{run_id}"
|
||||
)
|
||||
name: str
|
||||
description: str
|
||||
agents: List[str]
|
||||
start_time: str = Field(
|
||||
default_factory=lambda: str(datetime.now().timestamp()), # Numeric timestamp
|
||||
description="The start time of the swarm run.",
|
||||
)
|
||||
end_time: str
|
||||
tasks_completed: int
|
||||
outputs: List[AgentOutput]
|
||||
number_of_agents: int = Field(
|
||||
...,
|
||||
description="The number of agents participating in the swarm.",
|
||||
)
|
||||
|
||||
|
||||
class SpreadSheetSwarm(BaseSwarm):
|
||||
"""
|
||||
A swarm that processes tasks concurrently using multiple agents.
|
||||
|
||||
Args:
|
||||
name (str, optional): The name of the swarm. Defaults to "Spreadsheet-Swarm".
|
||||
description (str, optional): The description of the swarm. Defaults to "A swarm that processes tasks concurrently using multiple agents.".
|
||||
agents (Union[Agent, List[Agent]], optional): The agents participating in the swarm. Defaults to an empty list.
|
||||
autosave_on (bool, optional): Whether to enable autosave of swarm metadata. Defaults to True.
|
||||
save_file_path (str, optional): The file path to save the swarm metadata as a CSV file. Defaults to "spreedsheet_swarm.csv".
|
||||
max_loops (int, optional): The number of times to repeat the swarm tasks. Defaults to 1.
|
||||
workspace_dir (str, optional): The directory path of the workspace. Defaults to the value of the "WORKSPACE_DIR" environment variable.
|
||||
*args: Additional positional arguments.
|
||||
**kwargs: Additional keyword arguments.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
name: str = "Spreadsheet-Swarm",
|
||||
description: str = "A swarm that processes tasks concurrently using multiple agents and saves the metadata to a CSV file.",
|
||||
agents: Union[Agent, List[Agent]] = [],
|
||||
autosave_on: bool = True,
|
||||
save_file_path: str = None,
|
||||
max_loops: int = 1,
|
||||
workspace_dir: str = os.getenv("WORKSPACE_DIR"),
|
||||
load_path: str = None,
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(
|
||||
name=name,
|
||||
description=description,
|
||||
agents=agents if isinstance(agents, list) else [agents],
|
||||
*args,
|
||||
**kwargs,
|
||||
)
|
||||
self.name = name
|
||||
self.description = description
|
||||
self.save_file_path = save_file_path
|
||||
self.autosave_on = autosave_on
|
||||
self.max_loops = max_loops
|
||||
self.workspace_dir = workspace_dir
|
||||
|
||||
# Create a timestamp without colons or periods
|
||||
timestamp = datetime.now().isoformat().replace(":", "_").replace(".", "_")
|
||||
|
||||
# Use this timestamp in the CSV filename
|
||||
self.save_file_path = f"spreadsheet_swarm_{timestamp}_run_id_{run_id}.csv"
|
||||
|
||||
self.metadata = SwarmRunMetadata(
|
||||
run_id=f"spreadsheet_swarm_run_{run_id}",
|
||||
name=name,
|
||||
description=description,
|
||||
agents=[agent.name for agent in agents],
|
||||
start_time=str(datetime.now().timestamp()), # Numeric timestamp
|
||||
end_time="",
|
||||
tasks_completed=0,
|
||||
outputs=[],
|
||||
number_of_agents=len(agents),
|
||||
)
|
||||
|
||||
self.reliability_check()
|
||||
|
||||
def reliability_check(self):
|
||||
"""
|
||||
Check the reliability of the swarm.
|
||||
|
||||
Raises:
|
||||
ValueError: If no agents are provided or no save file path is provided.
|
||||
"""
|
||||
logger.info("Checking the reliability of the swarm...")
|
||||
|
||||
# if not self.agents:
|
||||
# raise ValueError("No agents are provided.")
|
||||
# if not self.save_file_path:
|
||||
# raise ValueError("No save file path is provided.")
|
||||
if not self.max_loops:
|
||||
raise ValueError("No max loops are provided.")
|
||||
|
||||
logger.info("Swarm reliability check passed.")
|
||||
logger.info("Swarm is ready to run.")
|
||||
|
||||
async def _load_from_csv(self):
|
||||
"""
|
||||
Load agent configurations from a CSV file.
|
||||
Expected CSV format: agent_name,description,system_prompt,task
|
||||
|
||||
Args:
|
||||
csv_path (str): Path to the CSV file containing agent configurations
|
||||
"""
|
||||
try:
|
||||
csv_path = self.load_path
|
||||
logger.info(
|
||||
f"Loading agent configurations from {csv_path}"
|
||||
)
|
||||
|
||||
async with aiofiles.open(csv_path, mode="r") as file:
|
||||
content = await file.read()
|
||||
csv_reader = csv.DictReader(content.splitlines())
|
||||
|
||||
for row in csv_reader:
|
||||
config = AgentConfig(
|
||||
agent_name=row["agent_name"],
|
||||
description=row["description"],
|
||||
system_prompt=row["system_prompt"],
|
||||
task=row["task"],
|
||||
)
|
||||
|
||||
# Create new agent with configuration
|
||||
new_agent = Agent(
|
||||
agent_name=config.agent_name,
|
||||
system_prompt=config.system_prompt,
|
||||
description=config.description,
|
||||
model_name=(
|
||||
row["model_name"]
|
||||
if "model_name" in row
|
||||
else "openai/gpt-4o"
|
||||
),
|
||||
docs=[row["docs"]] if "docs" in row else "",
|
||||
dynamic_temperature_enabled=True,
|
||||
max_loops=row["max_loops"] if "max_loops" in row else 1,
|
||||
user_name=row["user_name"] if "user_name" in row else "user",
|
||||
# output_type="str",
|
||||
stopping_token=row["stopping_token"] if "stopping_token" in row else None,
|
||||
)
|
||||
|
||||
# Add agent to swarm
|
||||
self.agents.append(new_agent)
|
||||
self.agent_configs[config.agent_name] = config
|
||||
|
||||
# Update metadata with new agents
|
||||
self.metadata.agents = [
|
||||
agent.name for agent in self.agents
|
||||
]
|
||||
self.metadata.number_of_agents = len(self.agents)
|
||||
logger.info(
|
||||
f"Loaded {len(self.agent_configs)} agent configurations"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error loading agent configurations: {e}")
|
||||
|
||||
def load_from_csv(self):
|
||||
asyncio.run(self._load_from_csv())
|
||||
|
||||
async def run_from_config(self):
|
||||
"""
|
||||
Run all agents with their configured tasks concurrently
|
||||
"""
|
||||
logger.info("Running agents from configuration")
|
||||
self.metadata.start_time = time
|
||||
|
||||
tasks = []
|
||||
for agent in self.agents:
|
||||
config = self.agent_configs.get(agent.agent_name)
|
||||
if config:
|
||||
for _ in range(self.max_loops):
|
||||
tasks.append(
|
||||
asyncio.to_thread(
|
||||
self._run_agent_task, agent, config.task
|
||||
)
|
||||
)
|
||||
|
||||
# Run all tasks concurrently
|
||||
results = await asyncio.gather(*tasks)
|
||||
|
||||
# Process the results
|
||||
for result in results:
|
||||
self._track_output(*result)
|
||||
|
||||
self.metadata.end_time = time
|
||||
|
||||
# Save metadata
|
||||
logger.info("Saving metadata to CSV and JSON...")
|
||||
await self._save_metadata()
|
||||
|
||||
if self.autosave_on:
|
||||
self.data_to_json_file()
|
||||
|
||||
log_agent_data(self.metadata.model_dump())
|
||||
return self.metadata.model_dump_json(indent=4)
|
||||
|
||||
async def _run(self, task: str = None, *args, **kwargs):
|
||||
"""
|
||||
Run the swarm either with a specific task or using configured tasks.
|
||||
|
||||
Args:
|
||||
task (str, optional): The task to be executed by all agents. If None, uses tasks from config.
|
||||
*args: Additional positional arguments.
|
||||
**kwargs: Additional keyword arguments.
|
||||
|
||||
Returns:
|
||||
str: The JSON representation of the swarm metadata.
|
||||
"""
|
||||
if task is None and self.agent_configs:
|
||||
return await self.run_from_config()
|
||||
else:
|
||||
self.metadata.start_time = time
|
||||
await self._run_tasks(task, *args, **kwargs)
|
||||
self.metadata.end_time = time
|
||||
await self._save_metadata()
|
||||
|
||||
if self.autosave_on:
|
||||
self.data_to_json_file()
|
||||
|
||||
print(log_agent_data(self.metadata.model_dump()))
|
||||
return self.metadata.model_dump_json(indent=4)
|
||||
|
||||
|
||||
def run(self, task: str = None, *args, **kwargs):
|
||||
"""
|
||||
Run the swarm with the specified task.
|
||||
|
||||
Args:
|
||||
task (str): The task to be executed by the swarm.
|
||||
*args: Additional positional arguments.
|
||||
**kwargs: Additional keyword arguments.
|
||||
|
||||
Returns:
|
||||
str: The JSON representation of the swarm metadata.
|
||||
|
||||
"""
|
||||
logger.info(f"Running the swarm with task: {task}")
|
||||
self.metadata.start_time = str(datetime.now().timestamp()) # Numeric timestamp
|
||||
|
||||
# Check if we're already in an event loop
|
||||
if asyncio.get_event_loop().is_running():
|
||||
# If so, create and run tasks directly using `create_task` without `asyncio.run`
|
||||
task_future = asyncio.create_task(self._run_tasks(task, *args, **kwargs))
|
||||
asyncio.get_event_loop().run_until_complete(task_future)
|
||||
else:
|
||||
# If no event loop is running, run using `asyncio.run`
|
||||
asyncio.run(self._run_tasks(task, *args, **kwargs))
|
||||
|
||||
self.metadata.end_time = str(datetime.now().timestamp()) # Numeric timestamp
|
||||
|
||||
# Synchronously save metadata
|
||||
logger.info("Saving metadata to CSV and JSON...")
|
||||
asyncio.run(self._save_metadata())
|
||||
|
||||
if self.autosave_on:
|
||||
self.data_to_json_file()
|
||||
|
||||
print(log_agent_data(self.metadata.model_dump()))
|
||||
|
||||
return self.metadata.model_dump_json(indent=4)
|
||||
|
||||
async def _run_tasks(self, task: str, *args, **kwargs):
|
||||
"""
|
||||
Run the swarm tasks concurrently.
|
||||
|
||||
Args:
|
||||
task (str): The task to be executed by the swarm.
|
||||
*args: Additional positional arguments.
|
||||
**kwargs: Additional keyword arguments.
|
||||
"""
|
||||
tasks = []
|
||||
for _ in range(self.max_loops):
|
||||
for agent in self.agents:
|
||||
# Use asyncio.to_thread to run the blocking task in a thread pool
|
||||
tasks.append(
|
||||
asyncio.to_thread(
|
||||
self._run_agent_task,
|
||||
agent,
|
||||
task,
|
||||
*args,
|
||||
**kwargs,
|
||||
)
|
||||
)
|
||||
|
||||
# Run all tasks concurrently
|
||||
results = await asyncio.gather(*tasks)
|
||||
|
||||
# Process the results
|
||||
for result in results:
|
||||
self._track_output(*result)
|
||||
|
||||
def _run_agent_task(self, agent, task, *args, **kwargs):
|
||||
"""
|
||||
Run a single agent's task in a separate thread.
|
||||
|
||||
Args:
|
||||
agent: The agent to run the task for.
|
||||
task (str): The task to be executed by the agent.
|
||||
*args: Additional positional arguments.
|
||||
**kwargs: Additional keyword arguments.
|
||||
|
||||
Returns:
|
||||
Tuple[str, str, str]: A tuple containing the agent name, task, and result.
|
||||
"""
|
||||
try:
|
||||
result = agent.run(task=task, *args, **kwargs)
|
||||
# Assuming agent.run() is a blocking call
|
||||
return agent.agent_name, task, result
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Error running task for {agent.agent_name}: {e}"
|
||||
)
|
||||
return agent.agent_name, task, str(e)
|
||||
|
||||
def _track_output(self, agent_name: str, task: str, result: str):
|
||||
"""
|
||||
Track the output of a completed task.
|
||||
|
||||
Args:
|
||||
agent_name (str): The name of the agent that completed the task.
|
||||
task (str): The task that was completed.
|
||||
result (str): The result of the completed task.
|
||||
"""
|
||||
self.metadata.tasks_completed += 1
|
||||
self.metadata.outputs.append(
|
||||
AgentOutput(
|
||||
agent_name=agent_name,
|
||||
task=task,
|
||||
result=result,
|
||||
timestamp=str(datetime.now().timestamp()), # Numeric timestamp
|
||||
)
|
||||
)
|
||||
|
||||
def export_to_json(self):
|
||||
"""
|
||||
Export the swarm metadata to JSON.
|
||||
|
||||
Returns:
|
||||
str: The JSON representation of the swarm metadata.
|
||||
"""
|
||||
return self.metadata.model_dump_json(indent=4)
|
||||
|
||||
def data_to_json_file(self):
|
||||
"""
|
||||
Save the swarm metadata to a JSON file.
|
||||
"""
|
||||
out = self.export_to_json()
|
||||
|
||||
create_file_in_folder(
|
||||
folder_path=f"{self.workspace_dir}/Spreedsheet-Swarm-{self.name}/{self.name}",
|
||||
file_name=f"spreedsheet-swarm-{self.metadata.run_id}_metadata.json",
|
||||
content=out,
|
||||
)
|
||||
|
||||
async def _save_metadata(self):
|
||||
"""
|
||||
Save the swarm metadata to CSV and JSON.
|
||||
"""
|
||||
if self.autosave_on:
|
||||
await self._save_to_csv()
|
||||
|
||||
async def _save_to_csv(self):
|
||||
"""
|
||||
Save the swarm metadata to a CSV file.
|
||||
"""
|
||||
logger.info(f"Saving swarm metadata to: {self.save_file_path}")
|
||||
run_id = uuid.uuid4()
|
||||
|
||||
# Check if file exists before opening it
|
||||
file_exists = os.path.exists(self.save_file_path)
|
||||
|
||||
async with aiofiles.open(self.save_file_path, mode="a") as file:
|
||||
# Write header if file doesn't exist
|
||||
if not file_exists:
|
||||
header = "Run ID,Agent Name,Task,Result,Timestamp\n"
|
||||
await file.write(header)
|
||||
|
||||
# Write each output as a new row
|
||||
for output in self.metadata.outputs:
|
||||
row = f"{run_id},{output.agent_name},{output.task},{output.result},{output.timestamp}\n"
|
||||
await file.write(row)
|
Loading…
Reference in new issue