Former-commit-id: 4042271160
WorkerULTRANODE
Kye 2 years ago
parent 419038b87e
commit ab2d08309d

@ -1300,6 +1300,56 @@ class VisualQuestionAnswering(BaseToolSet):
return answer
#========================> handlers/image
import torch
from PIL import Image
from transformers import BlipForConditionalGeneration, BlipProcessor
# from core.prompts.file import IMAGE_PROMPT
from swarms.prompts.prompts import IMAGE_PROMPT
from swarms.utils.utils import BaseHandler
class ImageCaptioning(BaseHandler):
def __init__(self, device):
print("Initializing ImageCaptioning to %s" % device)
self.device = device
self.torch_dtype = torch.float16 if "cuda" in device else torch.float32
self.processor = BlipProcessor.from_pretrained(
"Salesforce/blip-image-captioning-base"
)
self.model = BlipForConditionalGeneration.from_pretrained(
"Salesforce/blip-image-captioning-base", torch_dtype=self.torch_dtype
).to(self.device)
def handle(self, filename: str):
img = Image.open(filename)
width, height = img.size
ratio = min(512 / width, 512 / height)
width_new, height_new = (round(width * ratio), round(height * ratio))
img = img.resize((width_new, height_new))
img = img.convert("RGB")
img.save(filename, "PNG")
print(f"Resize image form {width}x{height} to {width_new}x{height_new}")
inputs = self.processor(Image.open(filename), return_tensors="pt").to(
self.device, self.torch_dtype
)
out = self.model.generate(**inputs)
description = self.processor.decode(out[0], skip_special_tokens=True)
print(
f"\nProcessed ImageCaptioning, Input Image: {filename}, Output Text: {description}"
)
return IMAGE_PROMPT.format(filename=filename, description=description)
#segment anything:
########################### MODELS

@ -225,7 +225,7 @@ class AbstractUploader(ABC):
#========================= upload s3
import os
import boto3
@ -262,7 +262,6 @@ class S3Uploader(AbstractUploader):
#========================= upload s3
#========================> upload/static
import os
import shutil
from pathlib import Path
@ -291,11 +290,9 @@ class StaticUploader(AbstractUploader):
#========================> handlers/base
import os
import shutil
import uuid
from enum import Enum
from pathlib import Path
from typing import Dict
import requests
@ -402,7 +399,6 @@ class FileHandler:
#############===========================>
import pandas as pd
from swarms.prompts.prompts import DATAFRAME_PROMPT
@ -425,77 +421,3 @@ class CsvToDataframe(BaseHandler):
#========================> handlers/image
import torch
from PIL import Image
from transformers import BlipForConditionalGeneration, BlipProcessor
# from core.prompts.file import IMAGE_PROMPT
from swarms.prompts.prompts import IMAGE_PROMPT
class ImageCaptioning(BaseHandler):
def __init__(self, device):
print("Initializing ImageCaptioning to %s" % device)
self.device = device
self.torch_dtype = torch.float16 if "cuda" in device else torch.float32
self.processor = BlipProcessor.from_pretrained(
"Salesforce/blip-image-captioning-base"
)
self.model = BlipForConditionalGeneration.from_pretrained(
"Salesforce/blip-image-captioning-base", torch_dtype=self.torch_dtype
).to(self.device)
def handle(self, filename: str):
img = Image.open(filename)
width, height = img.size
ratio = min(512 / width, 512 / height)
width_new, height_new = (round(width * ratio), round(height * ratio))
img = img.resize((width_new, height_new))
img = img.convert("RGB")
img.save(filename, "PNG")
print(f"Resize image form {width}x{height} to {width_new}x{height_new}")
inputs = self.processor(Image.open(filename), return_tensors="pt").to(
self.device, self.torch_dtype
)
out = self.model.generate(**inputs)
description = self.processor.decode(out[0], skip_special_tokens=True)
print(
f"\nProcessed ImageCaptioning, Input Image: {filename}, Output Text: {description}"
)
return IMAGE_PROMPT.format(filename=filename, description=description)
# from autogpt.agent import Agent
# from swarms.agents.swarms import worker_node
# class MultiAgent(worker_node):
# def __init__(
# self,
# ai_name,
# memory,
# full_message_history,
# prompt,
# user_input,
# agent_id
# ):
# super().__init__(
# ai_name=ai_name,
# memory=memory,
# full_message_history=full_message_history,
# next_action_count=0,
# prompt=prompt,
# user_input=user_input,
# )
# self.agent_id = agent_id
# self.auditory_buffer = [] # contains the non processed parts of the conversation
# def receive_message(self, speaker, message):
# self.auditory_buffer.append((speaker.ai_name, message))
Loading…
Cancel
Save