parent
b8d7e8248f
commit
ab64ff60b3
@ -0,0 +1,74 @@
|
|||||||
|
import torch
|
||||||
|
import logging
|
||||||
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
||||||
|
|
||||||
|
class HuggingFaceLLM:
|
||||||
|
"""
|
||||||
|
A class that represents a Language Model (LLM) powered by HuggingFace Transformers.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
model_id (str): ID of the pre-trained model in HuggingFace Model Hub.
|
||||||
|
device (str): Device to load the model onto.
|
||||||
|
max_length (int): Maximum length of the generated sequence.
|
||||||
|
tokenizer: Instance of the tokenizer corresponding to the model.
|
||||||
|
model: The loaded model instance.
|
||||||
|
logger: Logger instance for the class.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, model_id: str, device: str = None, max_length: int = 20, quantize: bool = False, quantization_config: dict = None):
|
||||||
|
"""
|
||||||
|
Constructs all the necessary attributes for the HuggingFaceLLM object.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model_id (str): ID of the pre-trained model in HuggingFace Model Hub.
|
||||||
|
device (str, optional): Device to load the model onto. Defaults to GPU if available, else CPU.
|
||||||
|
max_length (int, optional): Maximum length of the generated sequence. Defaults to 20.
|
||||||
|
quantize (bool, optional): Whether to apply quantization to the model. Defaults to False.
|
||||||
|
quantization_config (dict, optional): Configuration for model quantization. Defaults to None,
|
||||||
|
and a standard configuration will be used if quantize is True.
|
||||||
|
"""
|
||||||
|
self.logger = logging.getLogger(__name__)
|
||||||
|
self.device = device if device else ('cuda' if torch.cuda.is_available() else 'cpu')
|
||||||
|
self.model_id = model_id
|
||||||
|
self.max_length = max_length
|
||||||
|
|
||||||
|
bnb_config = None
|
||||||
|
if quantize:
|
||||||
|
if not quantization_config:
|
||||||
|
quantization_config = {
|
||||||
|
'load_in_4bit': True,
|
||||||
|
'bnb_4bit_use_double_quant': True,
|
||||||
|
'bnb_4bit_quant_type': "nf4",
|
||||||
|
'bnb_4bit_compute_dtype': torch.bfloat16
|
||||||
|
}
|
||||||
|
bnb_config = BitsAndBytesConfig(**quantization_config)
|
||||||
|
|
||||||
|
try:
|
||||||
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
||||||
|
self.model = AutoModelForCausalLM.from_pretrained(self.model_id, quantization_config=bnb_config)
|
||||||
|
self.model.to(self.device)
|
||||||
|
except Exception as e:
|
||||||
|
self.logger.error(f"Failed to load the model or the tokenizer: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
def generate_text(self, prompt_text: str, max_length: int = None):
|
||||||
|
"""
|
||||||
|
Generates text based on the input prompt using the loaded model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
prompt_text (str): Input prompt to generate text from.
|
||||||
|
max_length (int, optional): Maximum length of the generated sequence. Defaults to None,
|
||||||
|
and the max_length set during initialization will be used.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: Generated text.
|
||||||
|
"""
|
||||||
|
max_length = max_length if max_length else self.max_length
|
||||||
|
try:
|
||||||
|
inputs = self.tokenizer.encode(prompt_text, return_tensors="pt").to(self.device)
|
||||||
|
with torch.no_grad():
|
||||||
|
outputs = self.model.generate(inputs, max_length=max_length, do_sample=True)
|
||||||
|
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||||
|
except Exception as e:
|
||||||
|
self.logger.error(f"Failed to generate the text: {e}")
|
||||||
|
raise
|
Loading…
Reference in new issue