pull/522/head
Kye Gomez 7 months ago
parent aff2220b54
commit ab82586afd

@ -1,115 +1,40 @@
# Swarms FastAPI Documentation # Swarms API Documentation
The Swarms FastAPI module is designed to manage and interact with multiple language models through a RESTful API interface. This documentation will cover the classes, functions, and endpoints provided by this module, and provide comprehensive examples on how to use them effectively. The Swarms API provides endpoints to interact with various language models, manage agent configurations, and handle token counting. This documentation covers the available endpoints, input and output models, and detailed examples for each endpoint.
### Purpose ## Endpoints
The purpose of this module is to create a flexible, scalable API service that can interface with various language models including OpenAIChat, GPT4o, GPT4VisionAPI, and Anthropic models. This allows for dynamic model selection, efficient token counting, and handling user requests for AI-generated content.
### Key Features
- **Dynamic Model Switching**: Easily switch between different language models based on the user input.
- **Token Counting**: Efficiently count tokens using the `tiktoken` library.
- **Agent Configuration**: Configure and run agents with detailed settings for various tasks.
- **CORS Handling**: Support for Cross-Origin Resource Sharing (CORS) to allow web-based clients to interact with the API.
## Class Definitions
### `AgentInput`
The `AgentInput` class defines the structure of the input data required to configure and run an agent.
| Parameter | Type | Default | Description |
|-----------------------------|-----------------|---------------|-----------------------------------------------------------------------------|
| `agent_name` | `str` | "Swarm Agent" | The name of the agent. |
| `system_prompt` | `str` or `None` | `None` | The system prompt to guide the agent's behavior. |
| `agent_description` | `str` or `None` | `None` | A description of the agent's purpose. |
| `model_name` | `str` | "OpenAIChat" | The name of the language model to use. |
| `max_loops` | `int` | 1 | The maximum number of loops the agent should perform. |
| `autosave` | `bool` | `False` | Whether to enable autosave functionality. |
| `dynamic_temperature_enabled` | `bool` | `False` | Whether dynamic temperature adjustment is enabled. |
| `dashboard` | `bool` | `False` | Whether to enable the dashboard feature. |
| `verbose` | `bool` | `False` | Whether to enable verbose logging. |
| `streaming_on` | `bool` | `True` | Whether to enable streaming of responses. |
| `saved_state_path` | `str` or `None` | `None` | Path to save the agent's state. |
| `sop` | `str` or `None` | `None` | Standard operating procedures for the agent. |
| `sop_list` | `List[str]` or `None` | `None` | A list of standard operating procedures. |
| `user_name` | `str` | "User" | The name of the user interacting with the agent. |
| `retry_attempts` | `int` | 3 | Number of retry attempts for failed operations. |
| `context_length` | `int` | 8192 | Maximum context length for the model's input. |
| `task` | `str` or `None` | `None` | The task description for the agent to perform. |
### `AgentOutput`
The `AgentOutput` class defines the structure of the output data returned by the agent after processing a request.
| Parameter | Type | Description |
|-----------------|-----------------|-----------------------------------------------------------------------------|
| `agent` | `AgentInput` | The input configuration used to create the agent. |
| `completions` | `ChatCompletionResponse` | The response generated by the agent, including completion data. |
## Functions
### `count_tokens`
The `count_tokens` function counts the number of tokens in a given text using the `tiktoken` library.
**Parameters:**
- `text` (`str`): The text to be tokenized and counted.
**Returns:**
- `int`: The number of tokens in the text.
**Example Usage:**
```python
text = "This is a sample text to count tokens."
token_count = count_tokens(text)
print(f"Token count: {token_count}")
```
### `model_router`
The `model_router` function switches to the specified language model based on the provided model name.
**Parameters:**
- `model_name` (`str`): The name of the model to switch to.
**Returns:**
- An instance of the specified language model.
**Example Usage:**
```python
model_name = "OpenAIChat"
model_instance = model_router(model_name)
```
## FastAPI Endpoints
### `/v1/models` ### `/v1/models`
This endpoint lists the available models.
**Method:** `GET` **Method:** `GET`
**Response Model:** `List[str]` **Response Model:** `List[str]`
**Description:** **Description:**
Returns a list of available model names for the clients to query and understand the options. This endpoint returns a list of available model names. It is useful for clients to query and understand which models are available for use.
**Response Example:**
```json
[
"OpenAIChat",
"GPT4o",
"GPT4VisionAPI",
"Anthropic"
]
```
**Example Usage:** **Example Usage:**
```python ```python
# Using HTTP client to get the list of models import requests
response = requests.get("http://api.swarms.world/v1/models")
response = requests.get("http://localhost:8000/v1/models")
print(response.json()) print(response.json())
``` ```
### `/v1/agent/completions` ### `/v1/agent/completions`
This endpoint handles the completion request for an agent configured with the given input parameters.
**Method:** `POST` **Method:** `POST`
**Request Model:** `AgentInput` **Request Model:** `AgentInput`
@ -117,7 +42,75 @@ This endpoint handles the completion request for an agent configured with the gi
**Response Model:** `AgentOutput` **Response Model:** `AgentOutput`
**Description:** **Description:**
Receives an `AgentInput` configuration, sets up the agent, processes the request, and returns the completion results. This endpoint handles the completion request for an agent configured with the given input parameters. It processes the request and returns the completion results.
**Request Example:**
```json
{
"agent_name": "Swarm Agent",
"system_prompt": "Summarize the following text",
"agent_description": "An agent that summarizes text",
"model_name": "OpenAIChat",
"max_loops": 1,
"autosave": false,
"dynamic_temperature_enabled": false,
"dashboard": false,
"verbose": false,
"streaming_on": true,
"saved_state_path": null,
"sop": null,
"sop_list": null,
"user_name": "User",
"retry_attempts": 3,
"context_length": 8192,
"task": "This is a sample text that needs to be summarized."
}
```
**Response Example:**
```json
{
"agent": {
"agent_name": "Swarm Agent",
"system_prompt": "Summarize the following text",
"agent_description": "An agent that summarizes text",
"model_name": "OpenAIChat",
"max_loops": 1,
"autosave": false,
"dynamic_temperature_enabled": false,
"dashboard": false,
"verbose": false,
"streaming_on": true,
"saved_state_path": null,
"sop": null,
"sop_list": null,
"user_name": "User",
"retry_attempts": 3,
"context_length": 8192,
"task": "This is a sample text that needs to be summarized."
},
"completions": {
"choices": [
{
"index": 0,
"message": {
"role": "Swarm Agent",
"content": "The sample text summarizes how to perform text summarization using an agent.",
"name": null
}
}
],
"stream_choices": null,
"usage_info": {
"prompt_tokens": 10,
"completion_tokens": 15,
"total_tokens": 25
}
}
}
```
**Example Usage:** **Example Usage:**
@ -146,62 +139,84 @@ class AgentInput(BaseModel):
task: str = None task: str = None
agent_input = AgentInput(task="Generate a summary of the provided text.") agent_input = AgentInput(task="Generate a summary of the provided text.")
response = requests.post("http://api.swarms.world/v1/agent/completions", json=agent_input.dict()) response = requests.post("http://localhost:8000/v1/agent/completions", json=agent_input.dict())
print(response.json()) print(response.json())
``` ```
## Implementation Details ## Models
### FastAPI App Initialization ### AgentInput
The FastAPI application is initialized with CORS middleware to allow cross-origin requests. This is essential for enabling web-based clients to interact with the API without facing CORS issues. The `AgentInput` class defines the structure of the input data required to configure and run an agent.
```python | Parameter | Type | Default | Description |
from fastapi import FastAPI |--------------------------------|-----------------|-----------------|-----------------------------------------------------------------|
from fastapi.middleware.cors import CORSMiddleware | `agent_name` | `str` | "Swarm Agent" | The name of the agent. |
| `system_prompt` | `str` or `None` | `None` | The system prompt to guide the agent's behavior. |
app = FastAPI(debug=True) | `agent_description` | `str` or `None` | `None` | A description of the agent's purpose. |
| `model_name` | `str` | "OpenAIChat" | The name of the language model to use. |
app.add_middleware( | `max_loops` | `int` | 1 | The maximum number of loops the agent should perform. |
CORSMiddleware, | `autosave` | `bool` | `False` | Whether to enable autosave functionality. |
allow_origins=["*"], | `dynamic_temperature_enabled` | `bool` | `False` | Whether dynamic temperature adjustment is enabled. |
allow_credentials=True, | `dashboard` | `bool` | `False` | Whether to enable the dashboard feature. |
allow_methods=["*"], | `verbose` | `bool` | `False` | Whether to enable verbose logging. |
allow_headers=["*"], | `streaming_on` | `bool` | `True` | Whether to enable streaming of responses. |
) | `saved_state_path` | `str` or `None` | `None` | Path to save the agent's state. |
``` | `sop` | `str` or `None` | `None` | Standard operating procedures for the agent. |
| `sop_list` | `List[str]` or `None` | `None` | A list of standard operating procedures. |
| `user_name` | `str` | "User" | The name of the user interacting with the agent. |
| `retry_attempts` | `int` | 3 | Number of retry attempts for failed operations. |
| `context_length` | `int` | 8192 | Maximum context length for the model's input. |
| `task` | `str` or `None` | `None` | The task description for the agent to perform. |
### Model Switching Logic ### AgentOutput
The `model_router` function encapsulates the logic for switching between different language models based on the input model name. This is crucial for dynamic model selection based on user preferences. The `AgentOutput` class defines the structure of the output data returned by the agent after processing a request.
| Parameter | Type | Description |
|---------------|--------------------------|--------------------------------------------------|
| `agent` | `AgentInput` | The input configuration used to create the agent.|
| `completions` | `ChatCompletionResponse` | The response generated by the agent. |
## Functions
### count_tokens
The `count_tokens` function counts the number of tokens in a given text using the `tiktoken` library.
**Parameters:**
- `text` (`str`): The text to be tokenized and counted.
**Returns:**
- `int`: The number of tokens in the text.
**Example Usage:**
```python ```python
def model_router(model_name: str): text = "This is a sample text to count tokens."
if model_name == "OpenAIChat": token_count = count_tokens(text)
llm = OpenAIChat() print(f"Token count: {token_count}")
elif model_name == "GPT4o":
llm = GPT4o(openai_api_key=os.getenv("OPENAI_API_KEY"))
elif model_name == "GPT4VisionAPI":
llm = GPT4VisionAPI()
elif model_name == "Anthropic":
llm = Anthropic(anthropic_api_key=os.getenv("ANTHROPIC_API_KEY"))
else:
raise ValueError("Invalid model name provided.")
return llm
``` ```
### Token Counting Function ### model_router
The `count_tokens` function uses the `tiktoken` library to encode and count the number of tokens in a given text. This is essential for managing token limits and understanding the cost implications of API requests. The `model_router` function switches to the specified language model based on the provided model name.
**Parameters:**
- `model_name` (`str`): The name of the model to switch to.
**Returns:**
- An instance of the specified language model.
**Example Usage:**
```python ```python
def count_tokens(text: str): model_name = "OpenAIChat"
try: model_instance = model_router(model_name)
encoding = tiktoken.get_encoding("gpt-4o")
tokens = encoding.encode(text)
return len(tokens)
except Exception as e:
raise HTTPException(status_code=400, detail=str(e))
``` ```
## Additional Information and Tips ## Additional Information and Tips
@ -209,12 +224,3 @@ def count_tokens(text: str):
- **Error Handling**: Ensure robust error handling by catching exceptions and returning meaningful HTTP status codes and messages. - **Error Handling**: Ensure robust error handling by catching exceptions and returning meaningful HTTP status codes and messages.
- **Model Selection**: When adding new models, update the `model_router` function and the `/v1/models` endpoint to include the new model names. - **Model Selection**: When adding new models, update the `model_router` function and the `/v1/models` endpoint to include the new model names.
- **Token Management**: Keep track of token usage to optimize API costs and manage rate limits effectively. - **Token Management**: Keep track of token usage to optimize API costs and manage rate limits effectively.
## References and Resources
- [FastAPI Documentation](https://fastapi.tiangolo.com/)
- [Pydantic Documentation](https://pydantic-docs.helpmanual.io/)
- [tiktoken Library](https://github.com/openai/tiktoken)
- [OpenAI API Documentation](https://beta.openai.com/docs/)
This documentation provides a comprehensive guide to using the Swarms FastAPI module, with detailed descriptions, examples, and implementation insights to help developers effectively utilize the provided functionalities.
Loading…
Cancel
Save