pull/10/head
Kye 2 years ago
parent 2de1853609
commit ac57d09bd5

@ -109,4 +109,9 @@ huggingface_hub
fastapi_cache fastapi_cache
fastapi-limiter fastapi-limiter
sphinx_rtd_theme sphinx_rtd_theme
pegasusx
oceandb

@ -27,6 +27,8 @@ setup(
'asyncio', 'asyncio',
'nest_asyncio', 'nest_asyncio',
'bs4', 'bs4',
'pegasusx',
'oceandb',
'playwright', 'playwright',
'duckduckgo_search', 'duckduckgo_search',
'faiss-cpu', 'faiss-cpu',

@ -1,3 +1,38 @@
#init ocean #init ocean
# TODO upload ocean to pip and config it to the abstract class # TODO upload ocean to pip and config it to the abstract class
import logging
from typing import Union, List
import oceandb
from oceandb.utils.embedding_function import MultiModalEmbeddingFunction
class OceanDB:
def __init__(self):
try:
self.client = oceandb.Client()
print(self.client.heartbeat())
except Exception as e:
logging.error(f"Failed to initialize OceanDB client. Error: {e}")
def create_collection(self, collection_name: str, modality: str):
try:
embedding_function = MultiModalEmbeddingFunction(modality=modality)
collection = self.client.create_collection(collection_name, embedding_function=embedding_function)
return collection
except Exception as e:
logging.error(f"Failed to create collection. Error {e}")
def add_documents(self, collection, documents: List[str], ids: List[str]):
try:
return collection.add(documents=documents, ids=ids)
except Exception as e:
logging.error(f"Failed to add documents to collection. Error: {e}")
raise
def query(self, collection, query_texts: list[str], n_results: int):
try:
results = collection.query(query_texts=query_texts, n_results=n_results)
return results
except Exception as e:
logging.error(f"Failed to query the collection. Error {e}")
raise

@ -21,9 +21,14 @@ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(
# TODO: Add RLHF Data collection, ask user how the swarm is performing # TODO: Add RLHF Data collection, ask user how the swarm is performing
class HierarchicalSwarm: class HierarchicalSwarm:
def __init__(self, model_id: str = None, openai_api_key="", def __init__(self, model_id: str = None,
use_vectorstore=True, embedding_size: int = None, use_async=True, openai_api_key="",
human_in_the_loop=True, model_type: str = None, boss_prompt: str = None): use_vectorstore=True, embedding_size: int = None, use_async=True,
human_in_the_loop=True, model_type: str = None, boss_prompt: str = None,
worker_prompt:str = None,
temperature=None,
max_iterations=None,
):
#openai_api_key: the openai key. Default is empty #openai_api_key: the openai key. Default is empty
if not model_id: if not model_id:
logging.error("Model ID is not provided") logging.error("Model ID is not provided")
@ -38,12 +43,18 @@ class HierarchicalSwarm:
self.use_async = use_async self.use_async = use_async
self.human_in_the_loop = human_in_the_loop self.human_in_the_loop = human_in_the_loop
self.model_type = model_type
self.embedding_size = embedding_size self.embedding_size = embedding_size
self.boss_prompt = boss_prompt self.boss_prompt = boss_prompt
self.worker_prompt = worker_prompt
self.temperature = temperature
self.max_iterations = max_iterations
def initialize_llm(self, llm_class, temperature=0.5):
def initialize_llm(self, llm_class):
""" """
Init LLM Init LLM
@ -54,9 +65,9 @@ class HierarchicalSwarm:
try: try:
# Initialize language model # Initialize language model
if self.llm_class == 'openai' or OpenAI: if self.llm_class == 'openai' or OpenAI:
return llm_class(openai_api_key=self.openai_api_key, temperature=temperature) return llm_class(openai_api_key=self.openai_api_key, temperature=self.temperature)
elif self.model_type == "huggingface": elif self.model_type == "huggingface":
return HuggingFaceLLM(model_id=self.model_id, temperature=temperature) return HuggingFaceLLM(model_id=self.model_id, temperature=self.temperature)
except Exception as e: except Exception as e:
logging.error(f"Failed to initialize language model: {e}") logging.error(f"Failed to initialize language model: {e}")
@ -97,9 +108,7 @@ class HierarchicalSwarm:
""" """
Init vector store Init vector store
""" """
try:
try:
embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key) embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key)
embedding_size = self.embedding_size or 8192 embedding_size = self.embedding_size or 8192
index = faiss.IndexFlatL2(embedding_size) index = faiss.IndexFlatL2(embedding_size)
@ -119,21 +128,20 @@ class HierarchicalSwarm:
llm_class (class): The Language model class. Default is ChatOpenAI llm_class (class): The Language model class. Default is ChatOpenAI
ai_name (str): The AI name. Default is "Swarms worker AI assistant" ai_name (str): The AI name. Default is "Swarms worker AI assistant"
""" """
try:
try:
# Initialize worker node # Initialize worker node
llm = self.initialize_llm(ChatOpenAI) llm = self.initialize_llm(ChatOpenAI)
worker_node = WorkerNodeInitializer(llm=llm, tools=worker_tools, vectorstore=vectorstore) worker_node = WorkerNodeInitializer(llm=llm, tools=worker_tools, vectorstore=vectorstore)
worker_node.create_agent(ai_name=ai_name, ai_role="Assistant", search_kwargs={}, human_in_the_loop=self.human_in_the_loop) # add search kwargs worker_node.create_agent(ai_name=ai_name, ai_role="Assistant", search_kwargs={}, human_in_the_loop=self.human_in_the_loop) # add search kwargs
worker_description = self.worker_prompt
worker_node_tool = Tool(name="WorkerNode AI Agent", func=worker_node.run, description="Input: an objective with a todo list for that objective. Output: your task completed: Please be very clear what the objective and task instructions are. The Swarm worker agent is Useful for when you need to spawn an autonomous agent instance as a worker to accomplish any complex tasks, it can search the internet or write code or spawn child multi-modality models to process and generate images and text or audio and so on") worker_node_tool = Tool(name="WorkerNode AI Agent", func=worker_node.run, description= worker_description or "Input: an objective with a todo list for that objective. Output: your task completed: Please be very clear what the objective and task instructions are. The Swarm worker agent is Useful for when you need to spawn an autonomous agent instance as a worker to accomplish any complex tasks, it can search the internet or write code or spawn child multi-modality models to process and generate images and text or audio and so on")
return worker_node_tool return worker_node_tool
except Exception as e: except Exception as e:
logging.error(f"Failed to initialize worker node: {e}") logging.error(f"Failed to initialize worker node: {e}")
raise raise
def initialize_boss_node(self, vectorstore, worker_node, llm_class=OpenAI, max_iterations=5, verbose=False): def initialize_boss_node(self, vectorstore, worker_node, llm_class=OpenAI, max_iterations=None, verbose=False):
""" """
Init BossNode Init BossNode
@ -167,7 +175,7 @@ class HierarchicalSwarm:
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=[tool.name for tool in tools]) agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=[tool.name for tool in tools])
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=verbose) agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=verbose)
return BossNode(llm, vectorstore, agent_executor, max_iterations=max_iterations) return BossNode(llm, vectorstore, agent_executor, max_iterations=self.max_iterations)
except Exception as e: except Exception as e:
logging.error(f"Failed to initialize boss node: {e}") logging.error(f"Failed to initialize boss node: {e}")
raise raise
@ -206,7 +214,7 @@ class HierarchicalSwarm:
return None return None
# usage-# usage- # usage-# usage-
def swarm(api_key="", objective="", model_type=""): def swarm(api_key="", objective="", model_type="", model_id=""):
""" """
Run the swarm with the given API key and objective. Run the swarm with the given API key and objective.
@ -225,7 +233,7 @@ def swarm(api_key="", objective="", model_type=""):
logging.error("Invalid objective") logging.error("Invalid objective")
raise ValueError("A valid objective is required") raise ValueError("A valid objective is required")
try: try:
swarms = HierarchicalSwarm(api_key, use_async=False, model_type=model_type) # Turn off async swarms = HierarchicalSwarm(api_key, model_id, use_async=False, model_type=model_type) # Turn off async
result = swarms.run(objective) result = swarms.run(objective)
if result is None: if result is None:
logging.error("Failed to run swarms") logging.error("Failed to run swarms")
@ -236,4 +244,3 @@ def swarm(api_key="", objective="", model_type=""):
logging.error(f"An error occured in swarm: {e}") logging.error(f"An error occured in swarm: {e}")
return None return None

@ -0,0 +1,26 @@
import logging
from typing import Union
from pegasus import Pegasus
# import oceandb
# from oceandb.utils.embedding_functions import MultiModalEmbeddingfunction
class PegasusEmbedding:
def __init__(self, modality: str, multi_process: bool = False, n_processes: int = 4):
self.modality = modality
self.multi_process = multi_process
self.n_processes = n_processes
try:
self.pegasus = Pegasus(modality, multi_process, n_processes)
except Exception as e:
logging.error(f"Failed to initialize Pegasus with modality: {modality}: {e}")
raise
def embed(self, data: Union[str, list[str]]):
try:
return self.pegasus.embed(data)
except Exception as e:
logging.error(f"Failed to generate embeddings. Error: {e}")
raise
Loading…
Cancel
Save