parent
b8eed6ed75
commit
aca39f013e
@ -0,0 +1,5 @@
|
|||||||
|
from swarms import GodMode
|
||||||
|
|
||||||
|
god_mode = GodMode(num_workers=3, openai_api_key="", ai_name="Optimus Prime")
|
||||||
|
task = "What were the winning Boston Marathon times for the past 5 years (ending in 2022)? Generate a table of the year, name, country of origin, and times."
|
||||||
|
god_mode.print_responses(task)
|
File diff suppressed because one or more lines are too long
@ -1,55 +1,28 @@
|
|||||||
from concurrent.futures import ThreadPoolExecutor
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
|
|
||||||
from tabulate import tabulate
|
|
||||||
from termcolor import colored
|
from termcolor import colored
|
||||||
|
from tabulate import tabulate
|
||||||
from swarms.workers.worker import Worker
|
import anthropic
|
||||||
|
from langchain.llms import Anthropic
|
||||||
|
|
||||||
class GodMode:
|
class GodMode:
|
||||||
def __init__(
|
def __init__(self, llms):
|
||||||
self,
|
self.llms = llms
|
||||||
num_workers,
|
|
||||||
num_llms,
|
|
||||||
openai_api_key,
|
|
||||||
ai_name
|
|
||||||
):
|
|
||||||
self.workers = [
|
|
||||||
Worker(
|
|
||||||
openai_api_key=openai_api_key,
|
|
||||||
ai_name=ai_name
|
|
||||||
) for _ in range(num_workers)
|
|
||||||
]
|
|
||||||
# self.llms = [LLM() for _ in range(num_llms)]
|
|
||||||
self.all_agents = self.workers # + self.llms
|
|
||||||
|
|
||||||
def run_all(self, task):
|
def run_all(self, task):
|
||||||
with ThreadPoolExecutor() as executor:
|
with ThreadPoolExecutor() as executor:
|
||||||
responses = executor.map(
|
responses = executor.map(lambda llm: llm(task), self.llms)
|
||||||
lambda agent: agent.run(task) if hasattr(
|
|
||||||
agent, 'run'
|
|
||||||
) else agent(task), self.all_agents
|
|
||||||
)
|
|
||||||
|
|
||||||
return list(responses)
|
return list(responses)
|
||||||
|
|
||||||
def print_responses(self, task):
|
def print_responses(self, task):
|
||||||
responses = self.run_all(task)
|
responses = self.run_all(task)
|
||||||
|
|
||||||
table = []
|
table = []
|
||||||
|
|
||||||
for i, response in enumerate(responses):
|
for i, response in enumerate(responses):
|
||||||
agent_type = "Worker" if i < len(self.workers) else "LLM"
|
table.append([f"LLM {i+1}", response])
|
||||||
table.append([agent_type, response])
|
print(colored(tabulate(table, headers=["LLM", "Response"], tablefmt="pretty"), "cyan"))
|
||||||
print(
|
|
||||||
colored(
|
|
||||||
tabulate(
|
|
||||||
table,
|
|
||||||
headers=["Agent Type", "Response"],
|
|
||||||
tablefmt="pretty"
|
|
||||||
), "cyan")
|
|
||||||
)
|
|
||||||
|
|
||||||
# Usage
|
# Usage
|
||||||
god_mode = GodMode(num_workers=3, openai_api_key="", ai_name="Optimus Prime")
|
llms = [Anthropic(model="<model_name>", anthropic_api_key="my-api-key") for _ in range(5)]
|
||||||
task = "What were the winning Boston Marathon times for the past 5 years (ending in 2022)? Generate a table of the year, name, country of origin, and times."
|
|
||||||
|
god_mode = GodMode(llms)
|
||||||
|
task = f"{anthropic.HUMAN_PROMPT} What are the biggest risks facing humanity?{anthropic.AI_PROMPT}"
|
||||||
god_mode.print_responses(task)
|
god_mode.print_responses(task)
|
Loading…
Reference in new issue