pull/58/head
Kye 1 year ago
parent 0c45623292
commit b44321fa17

@ -57,30 +57,36 @@ print(response)
--- ---
## Usage ## Usage
- `GodMode` is a simple class that takes in x amount of llms and when given a task runs them all concurrently! - `MultiAgentDebate` is a simple class that enables multi agent collaboration.
```python
from swarms.models import Anthropic, GooglePalm, OpenAIChat ```python
from swarms.swarms import GodMode from swarms import Worker, MultiAgentDebate, select_speaker
claude = Anthropic(anthropic_api_key="") # Initialize agents
palm = GooglePalm(google_api_key="") worker1 = Worker(openai_api_key="", ai_name="Optimus Prime")
gpt = OpenAIChat(openai_api_key="") worker2 = Worker(openai_api_key="", ai_name="Bumblebee")
worker3 = Worker(openai_api_key="", ai_name="Megatron")
# Usage agents = [
llms = [ worker1,
claude, worker2,
palm, worker3
gpt
] ]
god_mode = GodMode(llms) # Initialize multi-agent debate with the selection function
debate = MultiAgentDebate(agents, select_speaker)
task = f"What are the biggest risks facing humanity?" # Run task
task = "What were the winning boston marathon times for the past 5 years (ending in 2022)? Generate a table of the year, name, country of origin, and times."
results = debate.run(task, max_iters=4)
god_mode.print_responses(task) # Print results
for result in results:
print(f"Agent {result['agent']} responded: {result['response']}")
``` ```
----
- The `Worker` is an fully feature complete agent with an llm, tools, and a vectorstore for long term memory! - The `Worker` is an fully feature complete agent with an llm, tools, and a vectorstore for long term memory!
```python ```python
@ -97,6 +103,27 @@ response = node.run(task)
print(response) print(response)
``` ```
------
### OmniModal Agent
- OmniModal Agent is an LLM that access to 10+ multi-modal encoders and diffusers! It can generate images, videos, speech, music and so much more, get started with:
```python
from langchain.llms import OpenAIChat
from swarms.agents import OmniModalAgent
llm = OpenAIChat(model_name="gpt-4")
agent = OmniModalAgent(llm)
agent.run("Create a video of a swarm of fish")
```
- OmniModal Agent has a ui in the root called `python3 omni_ui.py`
--- ---
# Documentation # Documentation

@ -1,50 +1,85 @@
import gradio as gr #Import required libraries
from gradio import Interface from gradio import Interface, Textbox, HTML
import threading import threading
import os import os
from langchain.llms import OpenAIChat import glob
from swarms.agents import OmniModalAgent import base64
from langchain.llms import OpenAIChat # Replace with your actual class
from swarms.agents import OmniModalAgent # Replace with your actual class
# Initialize the OmniModalAgent #Function to convert image to base64
llm = OpenAIChat(model_name="gpt-4") def image_to_base64(image_path):
agent = OmniModalAgent(llm) with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode()
# Global variable to store chat history #Function to get the most recently created image in the directory
def get_latest_image():
list_of_files = glob.glob('./*.png') # Replace with your image file type
if not list_of_files:
return None
latest_file = max(list_of_files, key=os.path.getctime)
return latest_file
#Initialize your OmniModalAgent
llm = OpenAIChat(model_name="gpt-4") # Replace with your actual initialization
agent = OmniModalAgent(llm) # Replace with your actual initialization
#Global variable to store chat history
chat_history = [] chat_history = []
#Function to update chat
def update_chat(user_input): def update_chat(user_input):
global chat_history global chat_history
chat_history.append({"type": "user", "content": user_input}) chat_history.append({"type": "user", "content": user_input})
# Get agent response #Get agent response
agent_response = agent.run(user_input) agent_response = agent.run(user_input)
# Handle the case where agent_response is not in the expected dictionary format
if not isinstance(agent_response, dict):
agent_response = {"type": "text", "content": str(agent_response)}
chat_history.append(agent_response) chat_history.append(agent_response)
# Check for the most recently created image and add it to the chat history
latest_image = get_latest_image()
if latest_image:
chat_history.append({"type": "image", "content": latest_image})
return render_chat(chat_history) return render_chat(chat_history)
#Function to render chat as HTML
def render_chat(chat_history): def render_chat(chat_history):
chat_str = '<div style="overflow-y: scroll; height: 400px;">' chat_str = "<div style='max-height:400px;overflow-y:scroll;'>"
for message in chat_history: for message in chat_history:
timestamp = message.get('timestamp', 'N/A')
if message['type'] == 'user': if message['type'] == 'user':
chat_str += f'<div style="text-align: right; color: blue; margin: 5px; border-radius: 10px; background-color: #E0F0FF; padding: 5px;">{message["content"]}<br><small>{timestamp}</small></div>' chat_str += f"<p><strong>User:</strong> {message['content']}</p>"
elif message['type'] == 'text': elif message['type'] == 'text':
chat_str += f'<div style="text-align: left; color: green; margin: 5px; border-radius: 10px; background-color: #E0FFE0; padding: 5px;">{message["content"]}<br><small>{timestamp}</small></div>' chat_str += f"<p><strong>Agent:</strong> {message['content']}</p>"
elif message['type'] == 'image': elif message['type'] == 'image':
img_path = os.path.join("root_directory", message['content']) img_path = os.path.join(".", message['content'])
chat_str += f'<div style="text-align: left; margin: 5px;"><img src="{img_path}" alt="image" style="max-width: 100%; border-radius: 10px;"/><br><small>{timestamp}</small></div>' base64_img = image_to_base64(img_path)
chat_str += '</div>' chat_str += f"<p><strong>Agent:</strong> <img src='data:image/png;base64,{base64_img}' alt='image' width='200'/></p>"
chat_str += "</div>"
return chat_str return chat_str
# Define Gradio interface #Define Gradio interface
iface = Interface( iface = Interface(
fn=update_chat, fn=update_chat,
inputs=gr.inputs.Textbox(lines=2, placeholder="Type your message here..."), inputs=Textbox(label="Your Message", type="text"),
outputs=gr.outputs.HTML(label="Chat History"), outputs=HTML(label="Chat History"),
live=True, live=True
title="Conversational AI Interface",
description="Chat with our AI agent!",
allow_flagging=False
) )
#Function to update the chat display
def update_display():
global chat_history
while True:
iface.update(render_chat(chat_history))
#Run the update_display function in a separate thread
threading.Thread(target=update_display).start()
#Run Gradio interface
iface.launch() iface.launch()
Loading…
Cancel
Save