parent
0c45623292
commit
b44321fa17
@ -1,50 +1,85 @@
|
||||
import gradio as gr
|
||||
from gradio import Interface
|
||||
#Import required libraries
|
||||
from gradio import Interface, Textbox, HTML
|
||||
import threading
|
||||
import os
|
||||
from langchain.llms import OpenAIChat
|
||||
from swarms.agents import OmniModalAgent
|
||||
import glob
|
||||
import base64
|
||||
from langchain.llms import OpenAIChat # Replace with your actual class
|
||||
from swarms.agents import OmniModalAgent # Replace with your actual class
|
||||
|
||||
# Initialize the OmniModalAgent
|
||||
llm = OpenAIChat(model_name="gpt-4")
|
||||
agent = OmniModalAgent(llm)
|
||||
#Function to convert image to base64
|
||||
def image_to_base64(image_path):
|
||||
with open(image_path, "rb") as image_file:
|
||||
return base64.b64encode(image_file.read()).decode()
|
||||
|
||||
#Function to get the most recently created image in the directory
|
||||
def get_latest_image():
|
||||
list_of_files = glob.glob('./*.png') # Replace with your image file type
|
||||
if not list_of_files:
|
||||
return None
|
||||
latest_file = max(list_of_files, key=os.path.getctime)
|
||||
return latest_file
|
||||
|
||||
#Initialize your OmniModalAgent
|
||||
llm = OpenAIChat(model_name="gpt-4") # Replace with your actual initialization
|
||||
agent = OmniModalAgent(llm) # Replace with your actual initialization
|
||||
|
||||
#Global variable to store chat history
|
||||
chat_history = []
|
||||
|
||||
#Function to update chat
|
||||
def update_chat(user_input):
|
||||
global chat_history
|
||||
chat_history.append({"type": "user", "content": user_input})
|
||||
|
||||
#Get agent response
|
||||
agent_response = agent.run(user_input)
|
||||
|
||||
# Handle the case where agent_response is not in the expected dictionary format
|
||||
if not isinstance(agent_response, dict):
|
||||
agent_response = {"type": "text", "content": str(agent_response)}
|
||||
|
||||
chat_history.append(agent_response)
|
||||
|
||||
# Check for the most recently created image and add it to the chat history
|
||||
latest_image = get_latest_image()
|
||||
if latest_image:
|
||||
chat_history.append({"type": "image", "content": latest_image})
|
||||
|
||||
return render_chat(chat_history)
|
||||
|
||||
#Function to render chat as HTML
|
||||
|
||||
def render_chat(chat_history):
|
||||
chat_str = '<div style="overflow-y: scroll; height: 400px;">'
|
||||
chat_str = "<div style='max-height:400px;overflow-y:scroll;'>"
|
||||
for message in chat_history:
|
||||
timestamp = message.get('timestamp', 'N/A')
|
||||
if message['type'] == 'user':
|
||||
chat_str += f'<div style="text-align: right; color: blue; margin: 5px; border-radius: 10px; background-color: #E0F0FF; padding: 5px;">{message["content"]}<br><small>{timestamp}</small></div>'
|
||||
chat_str += f"<p><strong>User:</strong> {message['content']}</p>"
|
||||
elif message['type'] == 'text':
|
||||
chat_str += f'<div style="text-align: left; color: green; margin: 5px; border-radius: 10px; background-color: #E0FFE0; padding: 5px;">{message["content"]}<br><small>{timestamp}</small></div>'
|
||||
chat_str += f"<p><strong>Agent:</strong> {message['content']}</p>"
|
||||
elif message['type'] == 'image':
|
||||
img_path = os.path.join("root_directory", message['content'])
|
||||
chat_str += f'<div style="text-align: left; margin: 5px;"><img src="{img_path}" alt="image" style="max-width: 100%; border-radius: 10px;"/><br><small>{timestamp}</small></div>'
|
||||
chat_str += '</div>'
|
||||
img_path = os.path.join(".", message['content'])
|
||||
base64_img = image_to_base64(img_path)
|
||||
chat_str += f"<p><strong>Agent:</strong> <img src='data:image/png;base64,{base64_img}' alt='image' width='200'/></p>"
|
||||
chat_str += "</div>"
|
||||
return chat_str
|
||||
|
||||
#Define Gradio interface
|
||||
iface = Interface(
|
||||
fn=update_chat,
|
||||
inputs=gr.inputs.Textbox(lines=2, placeholder="Type your message here..."),
|
||||
outputs=gr.outputs.HTML(label="Chat History"),
|
||||
live=True,
|
||||
title="Conversational AI Interface",
|
||||
description="Chat with our AI agent!",
|
||||
allow_flagging=False
|
||||
inputs=Textbox(label="Your Message", type="text"),
|
||||
outputs=HTML(label="Chat History"),
|
||||
live=True
|
||||
)
|
||||
|
||||
#Function to update the chat display
|
||||
def update_display():
|
||||
global chat_history
|
||||
while True:
|
||||
iface.update(render_chat(chat_history))
|
||||
|
||||
#Run the update_display function in a separate thread
|
||||
threading.Thread(target=update_display).start()
|
||||
|
||||
#Run Gradio interface
|
||||
iface.launch()
|
Loading…
Reference in new issue