pull/58/head
Kye 1 year ago
parent 0c45623292
commit b44321fa17

@ -57,30 +57,36 @@ print(response)
---
## Usage
- `GodMode` is a simple class that takes in x amount of llms and when given a task runs them all concurrently!
```python
- `MultiAgentDebate` is a simple class that enables multi agent collaboration.
from swarms.models import Anthropic, GooglePalm, OpenAIChat
from swarms.swarms import GodMode
```python
from swarms import Worker, MultiAgentDebate, select_speaker
claude = Anthropic(anthropic_api_key="")
palm = GooglePalm(google_api_key="")
gpt = OpenAIChat(openai_api_key="")
# Initialize agents
worker1 = Worker(openai_api_key="", ai_name="Optimus Prime")
worker2 = Worker(openai_api_key="", ai_name="Bumblebee")
worker3 = Worker(openai_api_key="", ai_name="Megatron")
# Usage
llms = [
claude,
palm,
gpt
agents = [
worker1,
worker2,
worker3
]
god_mode = GodMode(llms)
# Initialize multi-agent debate with the selection function
debate = MultiAgentDebate(agents, select_speaker)
task = f"What are the biggest risks facing humanity?"
# Run task
task = "What were the winning boston marathon times for the past 5 years (ending in 2022)? Generate a table of the year, name, country of origin, and times."
results = debate.run(task, max_iters=4)
god_mode.print_responses(task)
# Print results
for result in results:
print(f"Agent {result['agent']} responded: {result['response']}")
```
----
- The `Worker` is an fully feature complete agent with an llm, tools, and a vectorstore for long term memory!
```python
@ -97,6 +103,27 @@ response = node.run(task)
print(response)
```
------
### OmniModal Agent
- OmniModal Agent is an LLM that access to 10+ multi-modal encoders and diffusers! It can generate images, videos, speech, music and so much more, get started with:
```python
from langchain.llms import OpenAIChat
from swarms.agents import OmniModalAgent
llm = OpenAIChat(model_name="gpt-4")
agent = OmniModalAgent(llm)
agent.run("Create a video of a swarm of fish")
```
- OmniModal Agent has a ui in the root called `python3 omni_ui.py`
---
# Documentation

@ -1,50 +1,85 @@
import gradio as gr
from gradio import Interface
#Import required libraries
from gradio import Interface, Textbox, HTML
import threading
import os
from langchain.llms import OpenAIChat
from swarms.agents import OmniModalAgent
import glob
import base64
from langchain.llms import OpenAIChat # Replace with your actual class
from swarms.agents import OmniModalAgent # Replace with your actual class
# Initialize the OmniModalAgent
llm = OpenAIChat(model_name="gpt-4")
agent = OmniModalAgent(llm)
#Function to convert image to base64
def image_to_base64(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode()
#Function to get the most recently created image in the directory
def get_latest_image():
list_of_files = glob.glob('./*.png') # Replace with your image file type
if not list_of_files:
return None
latest_file = max(list_of_files, key=os.path.getctime)
return latest_file
#Initialize your OmniModalAgent
llm = OpenAIChat(model_name="gpt-4") # Replace with your actual initialization
agent = OmniModalAgent(llm) # Replace with your actual initialization
#Global variable to store chat history
chat_history = []
#Function to update chat
def update_chat(user_input):
global chat_history
chat_history.append({"type": "user", "content": user_input})
#Get agent response
agent_response = agent.run(user_input)
# Handle the case where agent_response is not in the expected dictionary format
if not isinstance(agent_response, dict):
agent_response = {"type": "text", "content": str(agent_response)}
chat_history.append(agent_response)
# Check for the most recently created image and add it to the chat history
latest_image = get_latest_image()
if latest_image:
chat_history.append({"type": "image", "content": latest_image})
return render_chat(chat_history)
#Function to render chat as HTML
def render_chat(chat_history):
chat_str = '<div style="overflow-y: scroll; height: 400px;">'
chat_str = "<div style='max-height:400px;overflow-y:scroll;'>"
for message in chat_history:
timestamp = message.get('timestamp', 'N/A')
if message['type'] == 'user':
chat_str += f'<div style="text-align: right; color: blue; margin: 5px; border-radius: 10px; background-color: #E0F0FF; padding: 5px;">{message["content"]}<br><small>{timestamp}</small></div>'
chat_str += f"<p><strong>User:</strong> {message['content']}</p>"
elif message['type'] == 'text':
chat_str += f'<div style="text-align: left; color: green; margin: 5px; border-radius: 10px; background-color: #E0FFE0; padding: 5px;">{message["content"]}<br><small>{timestamp}</small></div>'
chat_str += f"<p><strong>Agent:</strong> {message['content']}</p>"
elif message['type'] == 'image':
img_path = os.path.join("root_directory", message['content'])
chat_str += f'<div style="text-align: left; margin: 5px;"><img src="{img_path}" alt="image" style="max-width: 100%; border-radius: 10px;"/><br><small>{timestamp}</small></div>'
chat_str += '</div>'
img_path = os.path.join(".", message['content'])
base64_img = image_to_base64(img_path)
chat_str += f"<p><strong>Agent:</strong> <img src='data:image/png;base64,{base64_img}' alt='image' width='200'/></p>"
chat_str += "</div>"
return chat_str
#Define Gradio interface
iface = Interface(
fn=update_chat,
inputs=gr.inputs.Textbox(lines=2, placeholder="Type your message here..."),
outputs=gr.outputs.HTML(label="Chat History"),
live=True,
title="Conversational AI Interface",
description="Chat with our AI agent!",
allow_flagging=False
inputs=Textbox(label="Your Message", type="text"),
outputs=HTML(label="Chat History"),
live=True
)
#Function to update the chat display
def update_display():
global chat_history
while True:
iface.update(render_chat(chat_history))
#Run the update_display function in a separate thread
threading.Thread(target=update_display).start()
#Run Gradio interface
iface.launch()
Loading…
Cancel
Save