pull/518/merge
Kye Gomez 7 months ago
parent 58d9a36726
commit b4d9e29e50

@ -142,9 +142,10 @@ nav:
- Task: "swarms/structs/task.md"
- YamlModel: "swarms/structs/yaml_model.md"
- Workflows:
- BaseWorkflow: "swarms/structs/baseworkflow.md"
- BaseWorkflow: "swarms/structs/base_workflow.md"
- ConcurrentWorkflow: "swarms/structs/concurrentworkflow.md"
- SequentialWorkflow: "swarms/structs/sequential_workflow.md"
- MultiProcessingWorkflow: "swarms/structs/multi_processing_workflow.md"
- Multi Agent Architectures:
- Conversation: "swarms/structs/conversation.md"
- SwarmNetwork: "swarms/structs/swarmnetwork.md"
@ -153,6 +154,11 @@ nav:
- RoundRobin: "swarms/structs/round_robin_swarm.md"
- Mixture of Agents: "swarms/structs/moa.md"
- GraphWorkflow: "swarms/structs/graph_workflow.md"
- AsyncWorkflow: "swarms/structs/async_workflow.md"
- AutoSwarmRouter: "swarms/structs/auto_swarm_router.md"
- AutoSwarm: "swarms/structs/auto_swarm.md"
- GroupChat: "swarms/structs/group_chat.md"
- Swarms Cloud API:
- Overview: "swarms_cloud/main.md"
- Available Models: "swarms_cloud/available_models.md"

@ -0,0 +1,206 @@
# AsyncWorkflow Documentation
The `AsyncWorkflow` class represents an asynchronous workflow designed to execute tasks concurrently. This class is ideal for scenarios where tasks need to be run asynchronously, leveraging Python's asyncio capabilities to manage multiple tasks efficiently.
### Key Concepts
- **Asynchronous Execution**: Tasks are run concurrently using asyncio, allowing for non-blocking operations.
- **Task Pool**: A collection of tasks to be executed within the workflow.
- **Event Loop**: The asyncio event loop that manages the execution of asynchronous tasks.
- **Stopping Condition**: A condition that, when met, stops the execution of the workflow.
## Attributes
### Arguments
| Argument | Type | Default | Description |
|----------|------|---------|-------------|
| `name` | `str` | `"Async Workflow"` | The name of the workflow. |
| `description` | `str` | `"A workflow to run asynchronous tasks"` | The description of the workflow. |
| `max_loops` | `int` | `1` | The maximum number of loops to run the workflow. |
| `autosave` | `bool` | `True` | Flag indicating whether to autosave the results. |
| `dashboard` | `bool` | `False` | Flag indicating whether to display a dashboard. |
| `task_pool` | `List[Any]` | `[]` | The list of tasks in the workflow. |
| `results` | `List[Any]` | `[]` | The list of results from running the tasks. |
| `loop` | `Optional[asyncio.AbstractEventLoop]` | `None` | The event loop to use. |
| `stopping_condition` | `Optional[Callable]` | `None` | The stopping condition for the workflow. |
| `agents` | `List[Agent]` | `None` | A list of agents participating in the workflow. |
### Attributes
| Attribute | Type | Description |
|-----------|------|-------------|
| `name` | `str` | The name of the workflow. |
| `description` | `str` | The description of the workflow. |
| `max_loops` | `int` | The maximum number of loops to run the workflow. |
| `autosave` | `bool` | Flag indicating whether to autosave the results. |
| `dashboard` | `bool` | Flag indicating whether to display a dashboard. |
| `task_pool` | `List[Any]` | The list of tasks in the workflow. |
| `results` | `List[Any]` | The list of results from running the tasks. |
| `loop` | `Optional[asyncio.AbstractEventLoop]` | The event loop to use. |
| `stopping_condition` | `Optional[Callable]` | The stopping condition for the workflow. |
| `agents` | `List[Agent]` | A list of agents participating in the workflow. |
## Methods
### add
Adds a task or a list of tasks to the task pool.
**Arguments:**
| Parameter | Type | Default | Description |
|-----------|------|---------|-------------|
| `task` | `Any` | `None` | A single task to add. |
| `tasks` | `List[Any]` | `None` | A list of tasks to add. |
**Raises:**
- `ValueError`: If neither task nor tasks are provided.
**Examples:**
```python
workflow = AsyncWorkflow()
task1 = Task(description="Task 1")
task2 = Task(description="Task 2")
# Adding a single task
await workflow.add(task=task1)
# Adding multiple tasks
await workflow.add(tasks=[task1, task2])
```
### delete
Deletes a task from the workflow.
**Arguments:**
| Parameter | Type | Default | Description |
|-----------|------|---------|-------------|
| `task` | `Any` | `None` | A single task to delete. |
| `tasks` | `List[Task]` | `None` | A list of tasks to delete. |
**Examples:**
```python
workflow = AsyncWorkflow()
task1 = Task(description="Task 1")
task2 = Task(description="Task 2")
# Adding tasks to the workflow
await workflow.add(tasks=[task1, task2])
# Deleting a single task
await workflow.delete(task=task1)
# Deleting multiple tasks
await workflow.delete(tasks=[task1, task2])
```
### run
Runs the workflow and returns the results.
**Returns:**
| Return Type | Description |
|-------------|-------------|
| `List[Any]` | The results of the executed tasks. |
**Examples:**
```python
workflow = AsyncWorkflow()
task1 = Task(description="Task 1", execute=async_function)
task2 = Task(description="Task 2", execute=async_function)
# Adding tasks to the workflow
await workflow.add(tasks=[task1, task2])
# Running the workflow
results = await workflow.run()
```
### Additional Examples
#### Example 1: Simple AsyncWorkflow
```python
import asyncio
from swarms.structs.agent import Agent
from swarms.structs.task import Task
async def simple_task():
await asyncio.sleep(1)
return "Task Completed"
workflow = AsyncWorkflow()
task = Task(description="Simple Task", execute=simple_task)
# Adding a task to the workflow
await workflow.add(task=task)
# Running the workflow
results = await workflow.run()
print(results) # Output: ["Task Completed"]
```
#### Example 2: Workflow with Multiple Tasks
```python
import asyncio
from swarms.structs.agent import Agent
from swarms.structs.task import Task
async def task1():
await asyncio.sleep(1)
return "Task 1 Completed"
async def task2():
await asyncio.sleep(2)
return "Task 2 Completed"
workflow = AsyncWorkflow()
task_1 = Task(description="Task 1", execute=task1)
task_2 = Task(description="Task 2", execute=task2)
# Adding tasks to the workflow
await workflow.add(tasks=[task_1, task_2])
# Running the workflow
results = await workflow.run()
print(results) # Output: ["Task 1 Completed", "Task 2 Completed"]
```
#### Example 3: Workflow with Stopping Condition
```python
import asyncio
from swarms.structs.agent import Agent
from swarms.structs.task import Task
async def task1():
await asyncio.sleep(1)
return "Task 1 Completed"
async def task2():
await asyncio.sleep(2)
return "Task 2 Completed"
def stop_condition(results):
return "Task 2 Completed" in results
workflow = AsyncWorkflow(stopping_condition=stop_condition)
task_1 = Task(description="Task 1", execute=task1)
task_2 = Task(description="Task 2", execute=task2)
# Adding tasks to the workflow
await workflow.add(tasks=[task_1, task_2])
# Running the workflow
results = await workflow.run()
print(results) # Output: ["Task 1 Completed", "Task 2 Completed"]
```

@ -0,0 +1,191 @@
# AutoSwarm
The `AutoSwarm` class represents a swarm of agents that can be created and managed automatically. This class leverages the `AutoSwarmRouter` to route tasks to appropriate swarms and supports custom preprocessing, routing, and postprocessing of tasks. It is designed to handle complex workflows efficiently.
### Key Concepts
- **Swarm**: A group of agents working together to complete tasks.
- **Routing**: Directing tasks to the appropriate swarm based on specific criteria.
- **Preprocessing and Postprocessing**: Customizable functions to handle tasks before and after routing.
- **Event Loop**: Managing the execution of tasks in a loop.
## Attributes
### Arguments
| Argument | Type | Default | Description |
|---------------------|-------------------------------|-----------|-------------|
| `name` | `Optional[str]` | `None` | The name of the swarm. |
| `description` | `Optional[str]` | `None` | The description of the swarm. |
| `verbose` | `bool` | `False` | Whether to enable verbose mode. |
| `custom_params` | `Optional[Dict[str, Any]]` | `None` | Custom parameters for the swarm. |
| `custom_preprocess` | `Optional[Callable]` | `None` | Custom preprocessing function for tasks. |
| `custom_postprocess`| `Optional[Callable]` | `None` | Custom postprocessing function for task results. |
| `custom_router` | `Optional[Callable]` | `None` | Custom routing function for tasks. |
| `max_loops` | `int` | `1` | The maximum number of loops to run the workflow. |
### Attributes
| Attribute | Type | Description |
|----------------------|-------------------------------|-------------|
| `name` | `Optional[str]` | The name of the swarm. |
| `description` | `Optional[str]` | The description of the swarm. |
| `verbose` | `bool` | Whether to enable verbose mode. |
| `custom_params` | `Optional[Dict[str, Any]]` | Custom parameters for the swarm. |
| `custom_preprocess` | `Optional[Callable]` | Custom preprocessing function for tasks. |
| `custom_postprocess` | `Optional[Callable]` | Custom postprocessing function for task results. |
| `custom_router` | `Optional[Callable]` | Custom routing function for tasks. |
| `max_loops` | `int` | The maximum number of loops to run the workflow. |
| `router` | `AutoSwarmRouter` | The router for managing task routing. |
## Methods
### init_logging
Initializes logging for the `AutoSwarm`.
**Examples:**
```python
swarm = AutoSwarm(name="example_swarm", verbose=True)
swarm.init_logging()
```
### run
Runs the swarm simulation.
**Arguments:**
| Parameter | Type | Default | Description |
|-----------|---------|---------|-------------|
| `task` | `str` | `None` | The task to be executed. |
| `*args` | | | Additional arguments. |
| `**kwargs`| | | Additional keyword arguments. |
**Returns:**
| Return Type | Description |
|-------------|-------------|
| `Any` | The result of the executed task. |
**Raises:**
- `Exception`: If any error occurs during task execution.
**Examples:**
```python
swarm = AutoSwarm(name="example_swarm", max_loops=3)
result = swarm.run(task="example_task")
print(result)
```
### list_all_swarms
Lists all available swarms and their descriptions.
**Examples:**
```python
swarm = AutoSwarm(name="example_swarm", max_loops=3)
swarm.list_all_swarms()
# Output:
# INFO: Swarm Name: swarm1 || Swarm Description: Description of swarm1
# INFO: Swarm Name: swarm2 || Swarm Description: Description of swarm2
```
### Additional Examples
#### Example 1: Custom Preprocessing and Postprocessing
```python
def custom_preprocess(task, *args, **kwargs):
# Custom preprocessing logic
task = task.upper()
return task, args, kwargs
def custom_postprocess(result):
# Custom postprocessing logic
return result.lower()
swarm = AutoSwarm(
name="example_swarm",
custom_preprocess=custom_preprocess,
custom_postprocess=custom_postprocess,
max_loops=3
)
# Running a task with custom preprocessing and postprocessing
result = swarm.run(task="example_task")
print(result) # Output will be the processed result
```
#### Example 2: Custom Router Function
```python
def custom_router(swarm, task, *args, **kwargs):
# Custom routing logic
if "specific" in task:
return swarm.router.swarm_dict["specific_swarm"].run(task, *args, **kwargs)
return swarm.router.swarm_dict["default_swarm"].run(task, *args, **kwargs)
swarm = AutoSwarm(
name="example_swarm",
custom_router=custom_router,
max_loops=3
)
# Running a task with custom routing
result = swarm.run(task="specific_task")
print(result) # Output will be the result of the routed task
```
#### Example 3: Verbose Mode
```python
swarm = AutoSwarm(
name="example_swarm",
verbose=True,
max_loops=3
)
# Running a task with verbose mode enabled
result = swarm.run(task="example_task")
# Output will include detailed logs of the task execution process
```
#### Full Example 4:
First create a class with BaseSwarm -> Then wrap it in the router -> then pass that to the `AutoSwarm`
```python
from swarms import BaseSwarm, AutoSwarmRouter, AutoSwarm
class FinancialReportSummarization(BaseSwarm):
def __init__(self, name: str = None, *args, **kwargs):
super().__init__()
def run(self, task, *args, **kwargs):
return task
# Add swarm to router
router = AutoSwarmRouter(swarms=[FinancialReportSummarization])
# Create AutoSwarm Instance
autoswarm = AutoSwarm(
name="kyegomez/FinancialReportSummarization",
description="A swarm for financial document summarizing and generation",
verbose=True,
router=router,
)
# Run the AutoSwarm
autoswarm.run("Analyze these documents and give me a summary:")
```
## Summary
The `AutoSwarm` class provides a robust framework for managing and executing tasks using a swarm of agents. With customizable preprocessing, routing, and postprocessing functions, it is highly adaptable to various workflows and can handle complex task execution scenarios efficiently. The integration with `AutoSwarmRouter` enhances its flexibility, making it a powerful tool for dynamic task management.

@ -0,0 +1,165 @@
# AutoSwarmRouter
The `AutoSwarmRouter` class is designed to route tasks to the appropriate swarm based on the provided name. This class allows for customization of preprocessing, routing, and postprocessing of tasks, making it highly adaptable to various workflows and requirements.
### Key Concepts
- **Routing**: Directing tasks to the appropriate swarm based on specific criteria.
- **Preprocessing and Postprocessing**: Customizable functions to handle tasks before and after routing.
- **Swarms**: Collections of `BaseSwarm` objects that perform the tasks.
## Attributes
### Arguments
| Argument | Type | Default | Description |
|--------------------|----------------------------------|-----------|-------------|
| `name` | `Optional[str]` | `None` | The name of the router. |
| `description` | `Optional[str]` | `None` | The description of the router. |
| `verbose` | `bool` | `False` | Whether to enable verbose mode. |
| `custom_params` | `Optional[Dict[str, Any]]` | `None` | Custom parameters for the router. |
| `swarms` | `Sequence[BaseSwarm]` | `None` | A list of `BaseSwarm` objects. |
| `custom_preprocess`| `Optional[Callable]` | `None` | Custom preprocessing function for tasks. |
| `custom_postprocess`| `Optional[Callable]` | `None` | Custom postprocessing function for task results. |
| `custom_router` | `Optional[Callable]` | `None` | Custom routing function for tasks. |
### Attributes
| Attribute | Type | Description |
|----------------------|----------------------------------|-------------|
| `name` | `Optional[str]` | The name of the router. |
| `description` | `Optional[str]` | The description of the router. |
| `verbose` | `bool` | Whether to enable verbose mode. |
| `custom_params` | `Optional[Dict[str, Any]]` | Custom parameters for the router. |
| `swarms` | `Sequence[BaseSwarm]` | A list of `BaseSwarm` objects. |
| `custom_preprocess` | `Optional[Callable]` | Custom preprocessing function for tasks. |
| `custom_postprocess` | `Optional[Callable]` | Custom postprocessing function for task results. |
| `custom_router` | `Optional[Callable]` | Custom routing function for tasks. |
| `swarm_dict` | `Dict[str, BaseSwarm]` | A dictionary of swarms keyed by their name. |
## Methods
### run
Executes the swarm simulation and routes the task to the appropriate swarm.
**Arguments:**
| Parameter | Type | Default | Description |
|-----------|---------|---------|-------------|
| `task` | `str` | `None` | The task to be executed. |
| `*args` | | | Additional arguments. |
| `**kwargs`| | | Additional keyword arguments. |
**Returns:**
| Return Type | Description |
|-------------|-------------|
| `Any` | The result of the routed task. |
**Raises:**
- `ValueError`: If the specified swarm is not found.
- `Exception`: If any error occurs during task routing or execution.
**Examples:**
```python
router = AutoSwarmRouter(name="example_router", swarms=[swarm1, swarm2])
# Running a task
result = router.run(task="example_task")
```
### len_of_swarms
Prints the number of swarms available in the router.
**Examples:**
```python
router = AutoSwarmRouter(name="example_router", swarms=[swarm1, swarm2])
# Printing the number of swarms
router.len_of_swarms() # Output: 2
```
### list_available_swarms
Logs the available swarms and their descriptions.
**Examples:**
```python
router = AutoSwarmRouter(name="example_router", swarms=[swarm1, swarm2])
# Listing available swarms
router.list_available_swarms()
# Output:
# INFO: Swarm Name: swarm1 || Swarm Description: Description of swarm1
# INFO: Swarm Name: swarm2 || Swarm Description: Description of swarm2
```
### Additional Examples
#### Example 1: Custom Preprocessing and Postprocessing
```python
def custom_preprocess(task, *args, **kwargs):
# Custom preprocessing logic
task = task.upper()
return task, args, kwargs
def custom_postprocess(result):
# Custom postprocessing logic
return result.lower()
router = AutoSwarmRouter(
name="example_router",
swarms=[swarm1, swarm2],
custom_preprocess=custom_preprocess,
custom_postprocess=custom_postprocess
)
# Running a task with custom preprocessing and postprocessing
result = router.run(task="example_task")
print(result) # Output will be the processed result
```
#### Example 2: Custom Router Function
```python
def custom_router(router, task, *args, **kwargs):
# Custom routing logic
if "specific" in task:
return router.swarm_dict["specific_swarm"].run(task, *args, **kwargs)
return router.swarm_dict["default_swarm"].run(task, *args, **kwargs)
router = AutoSwarmRouter(
name="example_router",
swarms=[default_swarm, specific_swarm],
custom_router=custom_router
)
# Running a task with custom routing
result = router.run(task="specific_task")
print(result) # Output will be the result of the routed task
```
#### Example 3: Verbose Mode
```python
router = AutoSwarmRouter(
name="example_router",
swarms=[swarm1, swarm2],
verbose=True
)
# Running a task with verbose mode enabled
result = router.run(task="example_task")
# Output will include detailed logs of the task routing and execution process
```
## Summary
The `AutoSwarmRouter` class provides a flexible and customizable approach to routing tasks to appropriate swarms, supporting custom preprocessing, routing, and postprocessing functions. This makes it a powerful tool for managing complex workflows that require dynamic task handling and execution.

@ -0,0 +1,287 @@
# BaseWorkflow
The `BaseWorkflow` class serves as a foundational structure for defining and managing workflows. It allows users to add, remove, update, and manage tasks and agents within a workflow, offering flexibility and extensibility for various applications.
### Key Concepts
- **Agents**: Entities participating in the workflow.
- **Tasks**: Units of work to be executed within the workflow.
- **Models**: Computational models used within the workflow.
- **Workflow State**: The state of the workflow, which can be saved and restored.
## Attributes
### Arguments
| Argument | Type | Default | Description |
|----------|------|---------|-------------|
| `agents` | `List[Agent]` | `None` | A list of agents participating in the workflow. |
| `task_pool` | `List[Task]` | `None` | A list of tasks in the workflow. |
| `models` | `List[Any]` | `None` | A list of models used in the workflow. |
| `*args` | | | Variable length argument list. |
| `**kwargs` | | | Arbitrary keyword arguments. |
### Attributes
| Attribute | Type | Description |
|-----------|------|-------------|
| `agents` | `List[Agent]` | A list of agents participating in the workflow. |
| `task_pool` | `List[Task]` | A list of tasks in the workflow. |
| `models` | `List[Any]` | A list of models used in the workflow. |
## Methods
### add_task
Adds a task or a list of tasks to the task pool.
**Arguments:**
| Parameter | Type | Default | Description |
|-----------|------|---------|-------------|
| `task` | `Task` | `None` | A single task to add. |
| `tasks` | `List[Task]` | `None` | A list of tasks to add. |
**Raises:**
- `ValueError`: If neither task nor tasks are provided.
**Examples:**
```python
workflow = BaseWorkflow()
task1 = Task(description="Task 1")
task2 = Task(description="Task 2")
# Adding a single task
workflow.add_task(task=task1)
# Adding multiple tasks
workflow.add_task(tasks=[task1, task2])
```
### add_agent
Adds an agent to the workflow.
**Arguments:**
| Parameter | Type | Description |
|-----------|------|-------------|
| `agent` | `Agent` | The agent to add to the workflow. |
**Examples:**
```python
workflow = BaseWorkflow()
agent = Agent(name="Agent 1")
# Adding an agent to the workflow
workflow.add_agent(agent=agent)
```
### run
Abstract method to run the workflow.
### __sequential_loop
Abstract method for the sequential loop.
### __log
Logs a message if verbose mode is enabled.
**Arguments:**
| Parameter | Type | Description |
|-----------|------|-------------|
| `message` | `str` | The message to log. |
### __str__
Returns a string representation of the workflow.
### __repr__
Returns a string representation of the workflow for debugging.
### reset
Resets the workflow by clearing the results of each task.
**Examples:**
```python
workflow = BaseWorkflow()
workflow.reset()
```
### get_task_results
Returns the results of each task in the workflow.
**Returns:**
| Return Type | Description |
|-------------|-------------|
| `Dict[str, Any]` | The results of each task in the workflow. |
**Examples:**
```python
workflow = BaseWorkflow()
results = workflow.get_task_results()
```
### remove_task
Removes a task from the workflow.
**Arguments:**
| Parameter | Type | Description |
|-----------|------|-------------|
| `task` | `str` | The description of the task to remove. |
**Examples:**
```python
workflow = BaseWorkflow()
workflow.remove_task(task="Task 1")
```
### update_task
Updates the arguments of a task in the workflow.
**Arguments:**
| Parameter | Type | Description |
|-----------|------|-------------|
| `task` | `str` | The description of the task to update. |
| `**updates` | | The updates to apply to the task. |
**Raises:**
- `ValueError`: If the task is not found in the workflow.
**Examples:**
```python
workflow = BaseWorkflow()
task = Task(description="Task 1", kwargs={"param": 1})
# Adding a task to the workflow
workflow.add_task(task=task)
# Updating the task
workflow.update_task("Task 1", param=2)
```
### delete_task
Deletes a task from the workflow.
**Arguments:**
| Parameter | Type | Description |
|-----------|------|-------------|
| `task` | `str` | The description of the task to delete. |
**Raises:**
- `ValueError`: If the task is not found in the workflow.
**Examples:**
```python
workflow = BaseWorkflow()
task = Task(description="Task 1")
# Adding a task to the workflow
workflow.add_task(task=task)
# Deleting the task
workflow.delete_task("Task 1")
```
### save_workflow_state
Saves the workflow state to a json file.
**Arguments:**
| Parameter | Type | Default | Description |
|-----------|------|---------|-------------|
| `filepath` | `Optional[str]` | `"sequential_workflow_state.json"` | The path to save the workflow state to. |
**Examples:**
```python
workflow = BaseWorkflow()
workflow.save_workflow_state(filepath="workflow_state.json")
```
### add_objective_to_workflow
Adds an objective to the workflow.
**Arguments:**
| Parameter | Type | Description |
|-----------|------|-------------|
| `task` | `str` | The description of the task. |
| `**kwargs` | | Additional keyword arguments for the task. |
**Examples:**
```python
workflow = BaseWorkflow()
workflow.add_objective_to_workflow(task="New Objective", agent=agent, args=[], kwargs={})
```
### load_workflow_state
Loads the workflow state from a json file and restores the workflow state.
**Arguments:**
| Parameter | Type | Default | Description |
|-----------|------|---------|-------------|
| `filepath` | `str` | `None` | The path to load the workflow state from. |
**Examples:**
```python
workflow = BaseWorkflow()
workflow.load_workflow_state(filepath="workflow_state.json")
```
### workflow_dashboard
Displays a dashboard for the workflow.
**Arguments:**
| Parameter | Type | Description |
|-----------|------|-------------|
| `**kwargs` | | Additional keyword arguments to pass to the dashboard. |
**Examples:**
```python
workflow = BaseWorkflow()
workflow.workflow_dashboard()
```
### workflow_bootup
Initializes the workflow.
**Examples:**
```python
workflow = BaseWorkflow()
workflow.workflow_bootup()
```

@ -0,0 +1,238 @@
# GroupChat
The `GroupChat` class is designed to manage a group chat session involving multiple agents. This class handles initializing the conversation, selecting the next speaker, resetting the chat, and executing the chat rounds, providing a structured approach to managing a dynamic and interactive conversation.
### Key Concepts
- **Agents**: Entities participating in the group chat.
- **Conversation Management**: Handling the flow of conversation, selecting speakers, and maintaining chat history.
- **Round-based Execution**: Managing the chat in predefined rounds.
## Attributes
### Arguments
| Argument | Type | Default | Description |
|---------------------|----------------------|-------------|-------------|
| `agents` | `List[Agent]` | `None` | List of agents participating in the group chat. |
| `max_rounds` | `int` | `10` | Maximum number of chat rounds. |
| `admin_name` | `str` | `"Admin"` | Name of the admin user. |
| `group_objective` | `str` | `None` | Objective of the group chat. |
| `selector_agent` | `Agent` | `None` | Agent responsible for selecting the next speaker. |
| `rules` | `str` | `None` | Rules for the group chat. |
| `*args` | | | Variable length argument list. |
| `**kwargs` | | | Arbitrary keyword arguments. |
### Attributes
| Attribute | Type | Description |
|---------------------|----------------------|-------------|
| `agents` | `List[Agent]` | List of agents participating in the group chat. |
| `max_rounds` | `int` | Maximum number of chat rounds. |
| `admin_name` | `str` | Name of the admin user. |
| `group_objective` | `str` | Objective of the group chat. |
| `selector_agent` | `Agent` | Agent responsible for selecting the next speaker. |
| `messages` | `Conversation` | Conversation object for storing the chat messages. |
## Methods
### __init__
Initializes the group chat with the given parameters.
**Examples:**
```python
agents = [Agent(name="Agent 1"), Agent(name="Agent 2")]
group_chat = GroupChat(agents=agents, max_rounds=5, admin_name="GroupAdmin")
```
### agent_names
Returns the names of the agents in the group chat.
**Returns:**
| Return Type | Description |
|-------------|-------------|
| `List[str]` | List of agent names. |
**Examples:**
```python
names = group_chat.agent_names
print(names) # Output: ['Agent 1', 'Agent 2']
```
### reset
Resets the group chat by clearing the message history.
**Examples:**
```python
group_chat.reset()
```
### agent_by_name
Finds an agent whose name is contained within the given name string.
**Arguments:**
| Parameter | Type | Description |
|-----------|--------|-------------|
| `name` | `str` | Name string to search for. |
**Returns:**
| Return Type | Description |
|-------------|-------------|
| `Agent` | Agent object with a name contained in the given name string. |
**Raises:**
- `ValueError`: If no agent is found with a name contained in the given name string.
**Examples:**
```python
agent = group_chat.agent_by_name("Agent 1")
print(agent.agent_name) # Output: 'Agent 1'
```
### next_agent
Returns the next agent in the list.
**Arguments:**
| Parameter | Type | Description |
|-----------|--------|-------------|
| `agent` | `Agent`| Current agent. |
**Returns:**
| Return Type | Description |
|-------------|-------------|
| `Agent` | Next agent in the list. |
**Examples:**
```python
current_agent = group_chat.agents[0]
next_agent = group_chat.next_agent(current_agent)
print(next_agent.agent_name) # Output: Name of the next agent
```
### select_speaker_msg
Returns the message for selecting the next speaker.
**Returns:**
| Return Type | Description |
|-------------|-------------|
| `str` | Prompt message for selecting the next speaker. |
**Examples:**
```python
message = group_chat.select_speaker_msg()
print(message)
```
### select_speaker
Selects the next speaker.
**Arguments:**
| Parameter | Type | Description |
|----------------------|--------|-------------|
| `last_speaker_agent` | `Agent`| Last speaker in the conversation. |
| `selector_agent` | `Agent`| Agent responsible for selecting the next speaker. |
**Returns:**
| Return Type | Description |
|-------------|-------------|
| `Agent` | Next speaker. |
**Examples:**
```python
next_speaker = group_chat.select_speaker(last_speaker_agent, selector_agent)
print(next_speaker.agent_name)
```
### _participant_roles
Returns the roles of the participants.
**Returns:**
| Return Type | Description |
|-------------|-------------|
| `str` | Participant roles. |
**Examples:**
```python
roles = group_chat._participant_roles()
print(roles)
```
### __call__
Executes the group chat as a function.
**Arguments:**
| Parameter | Type | Description |
|-----------|--------|-------------|
| `task` | `str` | Task to be performed. |
**Returns:**
| Return Type | Description |
|-------------|-------------|
| `str` | Reply from the last speaker. |
**Examples:**
```python
response = group_chat(task="Discuss the project plan")
print(response)
```
### Additional Examples
#### Example 1: Initializing and Running a Group Chat
```python
agents = [Agent(name="Agent 1"), Agent(name="Agent 2"), Agent(name="Agent 3")]
selector_agent = Agent(name="Selector")
group_chat = GroupChat(agents=agents, selector_agent=selector_agent, max_rounds=3, group_objective="Discuss the quarterly goals.")
response = group_chat(task="Let's start the discussion on quarterly goals.")
print(response)
```
#### Example 2: Resetting the Group Chat
```python
group_chat.reset()
```
#### Example 3: Selecting the Next Speaker
```python
last_speaker = group_chat.agents[0]
next_speaker = group_chat.select_speaker(last_speaker_agent=last_speaker, selector_agent=selector_agent)
print(next_speaker.agent_name)
```
## Summary
The `GroupChat` class offers a structured approach to managing a group chat involving multiple agents. With functionalities for initializing conversations, selecting speakers, and handling chat rounds, it provides a robust framework for dynamic and interactive discussions. This makes it an essential tool for applications requiring coordinated communication among multiple agents.

@ -0,0 +1,204 @@
# MultiProcessWorkflow Documentation
The `MultiProcessWorkflow` class extends the `BaseWorkflow` to support parallel processing using multiple workers. This class is designed to efficiently execute tasks concurrently, leveraging the power of multi-processing to enhance performance and scalability.
### Key Concepts
- **Parallel Processing**: Utilizing multiple workers to execute tasks concurrently.
- **Workflow Management**: Handling the execution of tasks in a structured workflow.
- **Agents**: Entities responsible for executing tasks.
## Attributes
### Arguments
| Argument | Type | Default | Description |
|--------------|---------------------|---------|-------------|
| `max_workers`| `int` | `5` | The maximum number of workers to use for parallel processing. |
| `autosave` | `bool` | `True` | Flag indicating whether to automatically save the workflow. |
| `agents` | `Sequence[Agent]` | `None` | A list of agents participating in the workflow. |
| `*args` | | | Additional positional arguments. |
| `**kwargs` | | | Additional keyword arguments. |
### Attributes
| Attribute | Type | Description |
|--------------|---------------------|-------------|
| `max_workers`| `int` | The maximum number of workers to use for parallel processing. |
| `autosave` | `bool` | Flag indicating whether to automatically save the workflow. |
| `agents` | `Sequence[Agent]` | A list of agents participating in the workflow. |
## Methods
### __init__
Initializes the `MultiProcessWorkflow` with the given parameters.
**Examples:**
```python
from swarms.structs.agent import Agent
from swarms.structs.task import Task
from swarms.structs.multi_process_workflow import MultiProcessWorkflow
agents = [Agent(name="Agent 1"), Agent(name="Agent 2")]
tasks = [Task(name="Task 1", execute=lambda: "result1"), Task(name="Task 2", execute=lambda: "result2")]
workflow = MultiProcessWorkflow(max_workers=3, agents=agents, tasks=tasks)
```
### execute_task
Executes a task and handles exceptions.
**Arguments:**
| Parameter | Type | Description |
|-----------|------|-------------|
| `task` | `str` | The task to execute. |
| `*args` | | Additional positional arguments for the task execution. |
| `**kwargs`| | Additional keyword arguments for the task execution. |
**Returns:**
| Return Type | Description |
|-------------|-------------|
| `Any` | The result of the task execution. |
**Examples:**
```python
result = workflow.execute_task(task="Sample Task")
print(result)
```
### run
Runs the workflow.
**Arguments:**
| Parameter | Type | Description |
|-----------|------|-------------|
| `task` | `str` | The task to run. |
| `*args` | | Additional positional arguments for the task execution. |
| `**kwargs`| | Additional keyword arguments for the task execution. |
**Returns:**
| Return Type | Description |
|-------------|-------------|
| `List[Any]` | The results of all executed tasks. |
**Examples:**
```python
results = workflow.run(task="Sample Task")
print(results)
```
### Additional Examples
#### Example 1: Simple Task Execution
```python
from swarms import Agent, Task, MultiProcessWorkflow, OpenAIChat
from datetime import datetime
from time import sleep
import os
from dotenv import load_dotenv
# Load the environment variables
load_dotenv()
# Define a function to be used as the action
def my_action():
print("Action executed")
# Define a function to be used as the condition
def my_condition():
print("Condition checked")
return True
# Create an agent
agent = Agent(
llm=OpenAIChat(openai_api_key=os.environ["OPENAI_API_KEY"]),
max_loops=1,
dashboard=False,
)
# Create a task
task = Task(
description=(
"Generate a report on the top 3 biggest expenses for small"
" businesses and how businesses can save 20%"
),
agent=agent,
)
# Create a workflow with the task
workflow = MultiProcessWorkflow(tasks=[task])
# Run the workflow
results = workflow.run(task)
print(results)
```
#### Example 2: Workflow with Multiple Agents
```python
from swarms import Agent, Task, MultiProcessWorkflow
# Define tasks
def task1():
return "Task 1 result"
def task2():
return "Task 2 result"
# Create agents
agent1 = Agent(name="Agent 1", llm=OpenAIChat())
agent2 = Agent(name="Agent 2", llm=OpenAIChat())
# Create tasks
task_1 = Task(name="Task 1", execute=task1)
task_2 = Task(name="Task 2", execute=task2)
# Create a workflow
workflow = MultiProcessWorkflow(agents=[agent1, agent2], tasks=[task_1, task_2])
# Run the workflow
results = workflow.run(task="Example Task")
print(results)
```
#### Example 3: Customizing Max Workers
```python
from swarms import Agent, Task, MultiProcessWorkflow, OpenAIChat
# Define a task
def example_task():
return "Task result"
# Create an agent
agent = Agent(name="Agent 1", llm=OpenAIChat())
# Create a task
task = Task(name="Example Task", execute=example_task)
# Create a workflow with custom max workers
workflow = MultiProcessWorkflow(max_workers=10, agents=[agent], tasks=[task])
# Run the workflow
results = workflow.run(task="Example Task")
print(results)
```
## Summary
The `MultiProcessWorkflow` class provides a powerful framework for managing and executing tasks using multiple workers. With support for parallel processing, customizable workflows, and detailed logging, it is an ideal tool for complex task execution scenarios. This class enhances performance and scalability, making it suitable for a wide range of applications that require efficient task management.

@ -5,7 +5,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry]
name = "swarms"
version = "5.2.5"
version = "5.2.7"
description = "Swarms - Pytorch"
license = "MIT"
authors = ["Kye Gomez <kye@apac.ai>"]
@ -54,6 +54,9 @@ fastapi = "*"
openai = ">=1.30.1,<2.0"
termcolor = "*"
tiktoken = "*"
networkx = "*"
[tool.poetry.group.lint.dependencies]

@ -28,3 +28,4 @@ pytest>=8.1.1
termcolor>=2.4.0
pandas>=2.2.2
fastapi>=0.110.1
networkx

@ -89,7 +89,7 @@ from swarms.structs.yaml_model import (
pydantic_type_to_yaml_schema,
)
from swarms.structs.mixture_of_agents import MixtureOfAgents
from swarms.structs.graph_workflow import GraphWorkflow
from swarms.structs.graph_workflow import GraphWorkflow, Node, NodeType
__all__ = [
@ -124,7 +124,7 @@ __all__ = [
"TaskRequestBody",
"SequentialWorkflow",
"Step",
# "SwarmNetwork",
"SwarmNetwork",
"broadcast",
"circular_swarm",
"exponential_swarm",
@ -165,5 +165,6 @@ __all__ = [
"AgentLoadBalancer",
"MixtureOfAgents",
"GraphWorkflow",
"SwarmNetwork",
"Node",
"NodeType",
]

@ -10,6 +10,34 @@ from swarms.utils.loguru_logger import logger
class BaseWorkflow(BaseStructure):
"""
Base class for defining a workflow.
Args:
agents (List[Agent], optional): A list of agents participating in the workflow. Defaults to None.
task_pool (List[Task], optional): A list of tasks in the workflow. Defaults to None.
models (List[Any], optional): A list of models used in the workflow. Defaults to None.
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Attributes:
agents (List[Agent]): A list of agents participating in the workflow.
task_pool (List[Task]): A list of tasks in the workflow.
models (List[Any]): A list of models used in the workflow.
Methods:
add_task: Adds a task or a list of tasks to the task pool.
add_agent: Adds an agent to the workflow.
run: Abstract method to run the workflow.
reset: Resets the workflow by clearing the results of each task.
get_task_results: Returns the results of each task in the workflow.
remove_task: Removes a task from the workflow.
update_task: Updates the arguments of a task in the workflow.
delete_task: Deletes a task from the workflow.
save_workflow_state: Saves the workflow state to a json file.
add_objective_to_workflow: Adds an objective to the workflow.
load_workflow_state: Loads the workflow state from a json file and restores the workflow state.
"""
def __init__(
self,
agents: List[Agent] = None,

Loading…
Cancel
Save