pull/352/head
Kye 1 year ago
parent 19adce5f28
commit b65cd5b1fb

@ -8,12 +8,13 @@ load_dotenv()
# Load environment variables # Load environment variables
llm = OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY")) llm = OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY"))
agent = Agent( agent = Agent(
system_prompt=None,
llm=llm, llm=llm,
max_loops=1, max_loops=1,
) )
# Create a workflow # Create a workflow
workflow = ConcurrentWorkflow(max_workers=5) workflow = ConcurrentWorkflow(max_workers=3)
# Create tasks # Create tasks
task1 = Task(agent=agent, description="What's the weather in miami") task1 = Task(agent=agent, description="What's the weather in miami")
@ -23,9 +24,7 @@ task2 = Task(
task3 = Task(agent=agent, description="What's the weather in london") task3 = Task(agent=agent, description="What's the weather in london")
# Add tasks to the workflow # Add tasks to the workflow
workflow.add(task1) workflow.add(tasks=[task1, task2, task3])
workflow.add(task2)
workflow.add(task3)
# Run the workflow and print each task result # Run the workflow and print each task result
workflow.run() workflow.run()

@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry] [tool.poetry]
name = "swarms" name = "swarms"
version = "3.4.8" version = "3.5.0"
description = "Swarms - Pytorch" description = "Swarms - Pytorch"
license = "MIT" license = "MIT"
authors = ["Kye Gomez <kye@apac.ai>"] authors = ["Kye Gomez <kye@apac.ai>"]

@ -12,15 +12,12 @@ class ConcurrentWorkflow(BaseStructure):
ConcurrentWorkflow class for running a set of tasks concurrently using N number of autonomous agents. ConcurrentWorkflow class for running a set of tasks concurrently using N number of autonomous agents.
Args: Args:
max_workers (int): The maximum number of workers to use for concurrent execution. max_workers (int): The maximum number of workers to use for the ThreadPoolExecutor.
autosave (bool): Whether to autosave the workflow state. autosave (bool): Whether to save the state of the workflow to a file. Default is False.
saved_state_filepath (Optional[str]): The file path to save the workflow state. saved_state_filepath (str): The filepath to save the state of the workflow to. Default is "runs/concurrent_workflow.json".
print_results (bool): Whether to print the results of each task. Default is False.
Attributes: return_results (bool): Whether to return the results of each task. Default is False.
tasks (List[Task]): The list of tasks to execute. use_processes (bool): Whether to use processes instead of threads. Default is False.
max_workers (int): The maximum number of workers to use for concurrent execution.
autosave (bool): Whether to autosave the workflow state.
saved_state_filepath (Optional[str]): The file path to save the workflow state.
Examples: Examples:
>>> from swarms.models import OpenAIChat >>> from swarms.models import OpenAIChat
@ -33,7 +30,7 @@ class ConcurrentWorkflow(BaseStructure):
>>> workflow.tasks >>> workflow.tasks
""" """
tasks: List[Dict] = field(default_factory=list) task_pool: List[Dict] = field(default_factory=list)
max_workers: int = 5 max_workers: int = 5
autosave: bool = False autosave: bool = False
saved_state_filepath: Optional[str] = ( saved_state_filepath: Optional[str] = (
@ -43,7 +40,7 @@ class ConcurrentWorkflow(BaseStructure):
return_results: bool = False return_results: bool = False
use_processes: bool = False use_processes: bool = False
def add(self, task: Task): def add(self, task: Task = None, tasks: List[Task] = None):
"""Adds a task to the workflow. """Adds a task to the workflow.
Args: Args:
@ -51,7 +48,12 @@ class ConcurrentWorkflow(BaseStructure):
tasks (List[Task]): _description_ tasks (List[Task]): _description_
""" """
try: try:
self.tasks.append(task) if tasks:
for task in tasks:
self.task_pool.append(task)
else:
if task:
self.task_pool.append(task)
except Exception as error: except Exception as error:
print(f"[ERROR][ConcurrentWorkflow] {error}") print(f"[ERROR][ConcurrentWorkflow] {error}")
raise error raise error
@ -72,7 +74,7 @@ class ConcurrentWorkflow(BaseStructure):
) as executor: ) as executor:
futures = { futures = {
executor.submit(task.execute): task executor.submit(task.execute): task
for task in self.tasks for task in self.task_pool
} }
results = [] results = []
@ -88,14 +90,3 @@ class ConcurrentWorkflow(BaseStructure):
print(f"Task {task} generated an exception: {e}") print(f"Task {task} generated an exception: {e}")
return results if self.return_results else None return results if self.return_results else None
def _execute_task(self, task: Task):
"""Executes a task.
Args:
task (Task): _description_
Returns:
_type_: _description_
"""
return task.execute()

Loading…
Cancel
Save