parent
d2cd395e7b
commit
b6a8165b85
@ -0,0 +1,213 @@
|
|||||||
|
import logging
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
||||||
|
|
||||||
|
|
||||||
|
class HuggingfaceLLM:
|
||||||
|
"""
|
||||||
|
A class for running inference on a given model.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
model_id (str): The ID of the model.
|
||||||
|
device (str): The device to run the model on (either 'cuda' or 'cpu').
|
||||||
|
max_length (int): The maximum length of the output sequence.
|
||||||
|
quantize (bool, optional): Whether to use quantization. Defaults to False.
|
||||||
|
quantization_config (dict, optional): The configuration for quantization.
|
||||||
|
verbose (bool, optional): Whether to print verbose logs. Defaults to False.
|
||||||
|
logger (logging.Logger, optional): The logger to use. Defaults to a basic logger.
|
||||||
|
|
||||||
|
# Usage
|
||||||
|
```
|
||||||
|
from finetuning_suite import Inference
|
||||||
|
|
||||||
|
model_id = "gpt2-small"
|
||||||
|
inference = Inference(model_id=model_id)
|
||||||
|
|
||||||
|
prompt_text = "Once upon a time"
|
||||||
|
generated_text = inference(prompt_text)
|
||||||
|
print(generated_text)
|
||||||
|
```
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model_id: str,
|
||||||
|
device: str = None,
|
||||||
|
max_length: int = 20,
|
||||||
|
quantize: bool = False,
|
||||||
|
quantization_config: dict = None,
|
||||||
|
verbose=False,
|
||||||
|
# logger=None,
|
||||||
|
distributed=False,
|
||||||
|
decoding=False,
|
||||||
|
):
|
||||||
|
self.logger = logging.getLogger(__name__)
|
||||||
|
self.device = (
|
||||||
|
device if device else ("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
|
)
|
||||||
|
self.model_id = model_id
|
||||||
|
self.max_length = max_length
|
||||||
|
self.verbose = verbose
|
||||||
|
self.distributed = distributed
|
||||||
|
self.decoding = decoding
|
||||||
|
self.model, self.tokenizer = None, None
|
||||||
|
# self.log = Logging()
|
||||||
|
|
||||||
|
if self.distributed:
|
||||||
|
assert (
|
||||||
|
torch.cuda.device_count() > 1
|
||||||
|
), "You need more than 1 gpu for distributed processing"
|
||||||
|
|
||||||
|
bnb_config = None
|
||||||
|
if quantize:
|
||||||
|
if not quantization_config:
|
||||||
|
quantization_config = {
|
||||||
|
"load_in_4bit": True,
|
||||||
|
"bnb_4bit_use_double_quant": True,
|
||||||
|
"bnb_4bit_quant_type": "nf4",
|
||||||
|
"bnb_4bit_compute_dtype": torch.bfloat16,
|
||||||
|
}
|
||||||
|
bnb_config = BitsAndBytesConfig(**quantization_config)
|
||||||
|
|
||||||
|
try:
|
||||||
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
||||||
|
self.model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
self.model_id, quantization_config=bnb_config
|
||||||
|
)
|
||||||
|
|
||||||
|
self.model # .to(self.device)
|
||||||
|
except Exception as e:
|
||||||
|
self.logger.error(f"Failed to load the model or the tokenizer: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
def load_model(self):
|
||||||
|
if not self.model or not self.tokenizer:
|
||||||
|
try:
|
||||||
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
||||||
|
|
||||||
|
bnb_config = (
|
||||||
|
BitsAndBytesConfig(**self.quantization_config)
|
||||||
|
if self.quantization_config
|
||||||
|
else None
|
||||||
|
)
|
||||||
|
|
||||||
|
self.model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
self.model_id, quantization_config=bnb_config
|
||||||
|
).to(self.device)
|
||||||
|
|
||||||
|
if self.distributed:
|
||||||
|
self.model = DDP(self.model)
|
||||||
|
except Exception as error:
|
||||||
|
self.logger.error(f"Failed to load the model or the tokenizer: {error}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
def run(self, prompt_text: str, max_length: int = None):
|
||||||
|
"""
|
||||||
|
Generate a response based on the prompt text.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
- prompt_text (str): Text to prompt the model.
|
||||||
|
- max_length (int): Maximum length of the response.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
- Generated text (str).
|
||||||
|
"""
|
||||||
|
self.load_model()
|
||||||
|
|
||||||
|
max_length = max_length if max_length else self.max_length
|
||||||
|
|
||||||
|
try:
|
||||||
|
inputs = self.tokenizer.encode(prompt_text, return_tensors="pt").to(
|
||||||
|
self.device
|
||||||
|
)
|
||||||
|
|
||||||
|
# self.log.start()
|
||||||
|
|
||||||
|
if self.decoding:
|
||||||
|
with torch.no_grad():
|
||||||
|
for _ in range(max_length):
|
||||||
|
output_sequence = []
|
||||||
|
|
||||||
|
outputs = self.model.generate(
|
||||||
|
inputs, max_length=len(inputs) + 1, do_sample=True
|
||||||
|
)
|
||||||
|
output_tokens = outputs[0][-1]
|
||||||
|
output_sequence.append(output_tokens.item())
|
||||||
|
|
||||||
|
# print token in real-time
|
||||||
|
print(
|
||||||
|
self.tokenizer.decode(
|
||||||
|
[output_tokens], skip_special_tokens=True
|
||||||
|
),
|
||||||
|
end="",
|
||||||
|
flush=True,
|
||||||
|
)
|
||||||
|
inputs = outputs
|
||||||
|
else:
|
||||||
|
with torch.no_grad():
|
||||||
|
outputs = self.model.generate(
|
||||||
|
inputs, max_length=max_length, do_sample=True
|
||||||
|
)
|
||||||
|
|
||||||
|
del inputs
|
||||||
|
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||||
|
except Exception as e:
|
||||||
|
self.logger.error(f"Failed to generate the text: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
def __call__(self, prompt_text: str, max_length: int = None):
|
||||||
|
"""
|
||||||
|
Generate a response based on the prompt text.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
- prompt_text (str): Text to prompt the model.
|
||||||
|
- max_length (int): Maximum length of the response.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
- Generated text (str).
|
||||||
|
"""
|
||||||
|
self.load_model()
|
||||||
|
|
||||||
|
max_length = max_length if max_length else self.max_length
|
||||||
|
|
||||||
|
try:
|
||||||
|
inputs = self.tokenizer.encode(prompt_text, return_tensors="pt").to(
|
||||||
|
self.device
|
||||||
|
)
|
||||||
|
|
||||||
|
# self.log.start()
|
||||||
|
|
||||||
|
if self.decoding:
|
||||||
|
with torch.no_grad():
|
||||||
|
for _ in range(max_length):
|
||||||
|
output_sequence = []
|
||||||
|
|
||||||
|
outputs = self.model.generate(
|
||||||
|
inputs, max_length=len(inputs) + 1, do_sample=True
|
||||||
|
)
|
||||||
|
output_tokens = outputs[0][-1]
|
||||||
|
output_sequence.append(output_tokens.item())
|
||||||
|
|
||||||
|
# print token in real-time
|
||||||
|
print(
|
||||||
|
self.tokenizer.decode(
|
||||||
|
[output_tokens], skip_special_tokens=True
|
||||||
|
),
|
||||||
|
end="",
|
||||||
|
flush=True,
|
||||||
|
)
|
||||||
|
inputs = outputs
|
||||||
|
else:
|
||||||
|
with torch.no_grad():
|
||||||
|
outputs = self.model.generate(
|
||||||
|
inputs, max_length=max_length, do_sample=True
|
||||||
|
)
|
||||||
|
|
||||||
|
del inputs
|
||||||
|
|
||||||
|
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||||
|
except Exception as e:
|
||||||
|
self.logger.error(f"Failed to generate the text: {e}")
|
||||||
|
raise
|
Loading…
Reference in new issue