CLEAN UP: Structs folder of old workflow.py and nonlinearworkflow.py

pull/153/head^2
Kye 1 year ago
parent 0929e9c68d
commit b8c9ab04fe

@ -4,7 +4,6 @@ from swarms.models import Anthropic, OpenAIChat
from swarms.prompts.accountant_swarm_prompts import ( from swarms.prompts.accountant_swarm_prompts import (
DECISION_MAKING_PROMPT, DECISION_MAKING_PROMPT,
DOC_ANALYZER_AGENT_PROMPT, DOC_ANALYZER_AGENT_PROMPT,
FRAUD_DETECTION_AGENT_PROMPT,
SUMMARY_GENERATOR_AGENT_PROMPT, SUMMARY_GENERATOR_AGENT_PROMPT,
) )
from swarms.structs import Flow from swarms.structs import Flow
@ -61,16 +60,13 @@ print(pdf_text)
fraud_detection_agent_output = doc_analyzer_agent.run( fraud_detection_agent_output = doc_analyzer_agent.run(
f"{fraud_detection_instructions}: {pdf_text}" f"{fraud_detection_instructions}: {pdf_text}"
) )
# print(fraud_detection_agent_output)
# Generate an actionable summary of the document # Generate an actionable summary of the document
summary_agent_output = summary_generator_agent.run( summary_agent_output = summary_generator_agent.run(
f"{summary_agent_instructions}: {fraud_detection_agent_output}" f"{summary_agent_instructions}: {fraud_detection_agent_output}"
) )
# print(summary_agent_output)
# Provide decision making support to the accountant # Provide decision making support to the accountant
decision_making_support_agent_output = decision_making_support_agent.run( decision_making_support_agent_output = decision_making_support_agent.run(
f"{decision_making_support_agent_instructions}: {summary_agent_output}" f"{decision_making_support_agent_instructions}: {summary_agent_output}"
) )
# print(decision_making_support_agent_output)

@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry] [tool.poetry]
name = "swarms" name = "swarms"
version = "2.3.7" version = "2.3.9"
description = "Swarms - Pytorch" description = "Swarms - Pytorch"
license = "MIT" license = "MIT"
authors = ["Kye Gomez <kye@apac.ai>"] authors = ["Kye Gomez <kye@apac.ai>"]

@ -1,174 +0,0 @@
# from __future__ import annotations
# import json
# import pprint
# import uuid
# from abc import ABC, abstractmethod
# from enum import Enum
# from typing import Any, List, Optional, Union
# from pydantic import BaseModel, Field, StrictStr
# # from swarms.artifacts.main import Artifact
# # from swarms.artifacts.error_artifact import ErrorArtifact
# class BaseTask(ABC):
# class State(Enum):
# PENDING = 1
# EXECUTING = 2
# FINISHED = 3
# def __init__(self):
# self.id: str = uuid.uuid4().hex
# self.state: BaseTask.State = self.State.PENDING
# self.parent_ids: List[str] = []
# self.child_ids: List[str] = []
# self.output = None
# self.structure = None
# @property
# @abstractmethod
# def input(self) -> Any:
# pass
# @property
# def parents(self) -> List[BaseTask]:
# return [self.structure.find_task(parent_id) for parent_id in self.parent_ids]
# @property
# def children(self) -> List[BaseTask]:
# return [self.structure.find_task(child_id) for child_id in self.child_ids]
# def __rshift__(self, child: BaseTask) -> BaseTask:
# return self.add_child(child)
# def __lshift__(self, child: BaseTask) -> BaseTask:
# return self.add_parent(child)
# def preprocess(self, structure) -> BaseTask:
# self.structure = structure
# return self
# def add_child(self, child: BaseTask) -> BaseTask:
# if self.structure:
# child.structure = self.structure
# elif child.structure:
# self.structure = child.structure
# if child not in self.structure.tasks:
# self.structure.tasks.append(child)
# if self not in self.structure.tasks:
# self.structure.tasks.append(self)
# if child.id not in self.child_ids:
# self.child_ids.append(child.id)
# if self.id not in child.parent_ids:
# child.parent_ids.append(self.id)
# return child
# def add_parent(self, parent: BaseTask) -> BaseTask:
# if self.structure:
# parent.structure = self.structure
# elif parent.structure:
# self.structure = parent.structure
# if parent not in self.structure.tasks:
# self.structure.tasks.append(parent)
# if self not in self.structure.tasks:
# self.structure.tasks.append(self)
# if parent.id not in self.parent_ids:
# self.parent_ids.append(parent.id)
# if self.id not in parent.child_ids:
# parent.child_ids.append(self.id)
# return parent
# def is_pending(self) -> bool:
# return self.state == self.State.PENDING
# def is_finished(self) -> bool:
# return self.state == self.State.FINISHED
# def is_executing(self) -> bool:
# return self.state == self.State.EXECUTING
# def before_run(self) -> None:
# pass
# def after_run(self) -> None:
# pass
# def execute(self) -> Optional[Union[Artifact, ErrorArtifact]]:
# try:
# self.state = self.State.EXECUTING
# self.before_run()
# self.output = self.run()
# self.after_run()
# except Exception as e:
# self.output = ErrorArtifact(str(e))
# finally:
# self.state = self.State.FINISHED
# return self.output
# def can_execute(self) -> bool:
# return self.state == self.State.PENDING and all(
# parent.is_finished() for parent in self.parents
# )
# def reset(self) -> BaseTask:
# self.state = self.State.PENDING
# self.output = None
# return self
# @abstractmethod
# def run(self) -> Optional[Union[Artifact, ErrorArtifact]]:
# pass
# class Task(BaseModel):
# input: Optional[StrictStr] = Field(None, description="Input prompt for the task")
# additional_input: Optional[Any] = Field(
# None, description="Input parameters for the task. Any value is allowed"
# )
# task_id: StrictStr = Field(..., description="ID of the task")
# class Config:
# allow_population_by_field_name = True
# validate_assignment = True
# def to_str(self) -> str:
# return pprint.pformat(self.dict(by_alias=True))
# def to_json(self) -> str:
# return json.dumps(self.dict(by_alias=True, exclude_none=True))
# @classmethod
# def from_json(cls, json_str: str) -> "Task":
# return cls.parse_raw(json_str)
# def to_dict(self) -> dict:
# _dict = self.dict(by_alias=True, exclude_none=True)
# if self.artifacts:
# _dict["artifacts"] = [
# artifact.dict(by_alias=True, exclude_none=True)
# for artifact in self.artifacts
# ]
# return _dict
# @classmethod
# def from_dict(cls, obj: dict) -> "Task":
# if obj is None:
# return None
# if not isinstance(obj, dict):
# raise ValueError("Input must be a dictionary.")
# if "artifacts" in obj:
# obj["artifacts"] = [
# Artifact.parse_obj(artifact) for artifact in obj["artifacts"]
# ]
# return cls.parse_obj(obj)

@ -1,84 +0,0 @@
from __future__ import annotations
import uuid
# from concurrent.futures import ThreadPoolExecutor
# from typing import Any, Dict, List, Optional
# # from swarms.structs.task import Task
# class Workflow:
# """
# Workflows are ideal for prescriptive processes that need to be executed
# sequentially.
# They string together multiple tasks of varying types, and can use Short-Term Memory
# or pass specific arguments downstream.
# Usage
# llm = LLM()
# workflow = Workflow(llm)
# workflow.add("What's the weather in miami")
# workflow.add("Provide details for {{ parent_output }}")
# workflow.add("Summarize the above information: {{ parent_output}})
# workflow.run()
# """
# def __init__(self, agent, parallel: bool = False):
# """__init__"""
# self.agent = agent
# self.tasks: List[Task] = []
# self.parallel = parallel
# def add(self, task: str) -> Task:
# """Add a task"""
# task = Task(task_id=uuid.uuid4().hex, input=task)
# if self.last_task():
# self.last_task().add_child(task)
# else:
# task.structure = self
# self.tasks.append(task)
# return task
# def first_task(self) -> Optional[Task]:
# """Add first task"""
# return self.tasks[0] if self.tasks else None
# def last_task(self) -> Optional[Task]:
# """Last task"""
# return self.tasks[-1] if self.tasks else None
# def run(self, task: str) -> Task:
# """Run tasks"""
# self.add(task)
# if self.parallel:
# with ThreadPoolExecutor() as executor:
# list(executor.map(self.__run_from_task, [self.first_task]))
# else:
# self.__run_from_task(self.first_task())
# return self.last_task()
# def context(self, task: Task) -> Dict[str, Any]:
# """Context in tasks"""
# return {
# "parent_output": task.parents[0].output
# if task.parents and task.parents[0].output
# else None,
# "parent": task.parents[0] if task.parents else None,
# "child": task.children[0] if task.children else None,
# }
# def __run_from_task(self, task: Optional[Task]) -> None:
# """Run from task"""
# if task is None:
# return
# else:
# if isinstance(task.execute(), Exception):
# return
# else:
# self.__run_from_task(next(iter(task.children), None))
Loading…
Cancel
Save