- Implemented `market_system.py` for financial market analysis - Added `enterprise_doc_processor.py` for document classification and processing - Created `diagnostic_system.py` for healthcare diagnostics using agent architecturepull/819/head
							parent
							
								
									7febc47960
								
							
						
					
					
						commit
						b8dda6f92b
					
				| @ -0,0 +1,71 @@ | |||||||
|  | 
 | ||||||
|  | from swarms.structs.agent import Agent | ||||||
|  | from swarms.prompts.finance_agent_sys_prompt import FINANCIAL_AGENT_SYS_PROMPT | ||||||
|  | 
 | ||||||
|  | # Technical Analysis Specialist | ||||||
|  | technical_analyst = Agent( | ||||||
|  |     agent_name="Technical-Analysis-Expert", | ||||||
|  |     agent_description="Advanced technical analysis specialist focusing on complex market patterns", | ||||||
|  |     system_prompt="""You are an expert Technical Analyst specializing in: | ||||||
|  |     1. Advanced Pattern Recognition (Elliot Wave, Wyckoff Method) | ||||||
|  |     2. Multi-timeframe Analysis | ||||||
|  |     3. Volume Profile Analysis | ||||||
|  |     4. Market Structure Analysis | ||||||
|  |     5. Intermarket Analysis""", | ||||||
|  |     max_loops=3, | ||||||
|  |     model_name="gpt-4" | ||||||
|  | ) | ||||||
|  | 
 | ||||||
|  | # Fundamental Analysis Expert | ||||||
|  | fundamental_analyst = Agent( | ||||||
|  |     agent_name="Fundamental-Analysis-Expert", | ||||||
|  |     agent_description="Deep fundamental analysis specialist", | ||||||
|  |     system_prompt="""You are a Fundamental Analysis expert focusing on: | ||||||
|  |     1. Advanced Financial Statement Analysis | ||||||
|  |     2. Economic Indicator Impact Assessment | ||||||
|  |     3. Industry Competitive Analysis | ||||||
|  |     4. Global Macro Trends | ||||||
|  |     5. Corporate Governance Evaluation""", | ||||||
|  |     max_loops=3, | ||||||
|  |     model_name="gpt-4" | ||||||
|  | ) | ||||||
|  | 
 | ||||||
|  | # Risk Management Specialist | ||||||
|  | risk_analyst = Agent( | ||||||
|  |     agent_name="Risk-Management-Expert", | ||||||
|  |     agent_description="Complex risk analysis and management specialist", | ||||||
|  |     system_prompt="""You are a Risk Management expert specializing in: | ||||||
|  |     1. Portfolio Risk Assessment | ||||||
|  |     2. Value at Risk (VaR) Analysis | ||||||
|  |     3. Stress Testing Scenarios | ||||||
|  |     4. Correlation Analysis | ||||||
|  |     5. Risk-Adjusted Performance Metrics""", | ||||||
|  |     max_loops=3, | ||||||
|  |     model_name="gpt-4" | ||||||
|  | ) | ||||||
|  | 
 | ||||||
|  | class MarketAnalysisSystem: | ||||||
|  |     def __init__(self): | ||||||
|  |         self.agents = [technical_analyst, fundamental_analyst, risk_analyst] | ||||||
|  |          | ||||||
|  |     def comprehensive_analysis(self, asset_data): | ||||||
|  |         analysis_results = [] | ||||||
|  |         for agent in self.agents: | ||||||
|  |             analysis = agent.run(f"Analyze this asset data: {asset_data}") | ||||||
|  |             analysis_results.append({ | ||||||
|  |                 "analyst": agent.agent_name, | ||||||
|  |                 "analysis": analysis | ||||||
|  |             }) | ||||||
|  |          | ||||||
|  |         # Synthesize results through risk analyst for final recommendation | ||||||
|  |         final_analysis = risk_analyst.run( | ||||||
|  |             f"Synthesize these analyses and provide a final recommendation: {analysis_results}" | ||||||
|  |         ) | ||||||
|  |          | ||||||
|  |         return { | ||||||
|  |             "detailed_analysis": analysis_results, | ||||||
|  |             "final_recommendation": final_analysis | ||||||
|  |         } | ||||||
|  | 
 | ||||||
|  | # Usage | ||||||
|  | analysis_system = MarketAnalysisSystem() | ||||||
| @ -0,0 +1,67 @@ | |||||||
|  | 
 | ||||||
|  | from swarms.structs.agent import Agent | ||||||
|  | from swarms.utils.pdf_to_text import pdf_to_text | ||||||
|  | import asyncio | ||||||
|  | 
 | ||||||
|  | class DocumentProcessingPipeline: | ||||||
|  |     def __init__(self): | ||||||
|  |         self.document_analyzer = Agent( | ||||||
|  |             agent_name="Document-Analyzer", | ||||||
|  |             agent_description="Enterprise document analysis specialist", | ||||||
|  |             system_prompt="""You are an expert document analyzer specializing in: | ||||||
|  |             1. Complex Document Structure Analysis | ||||||
|  |             2. Key Information Extraction | ||||||
|  |             3. Compliance Verification | ||||||
|  |             4. Document Classification | ||||||
|  |             5. Content Validation""", | ||||||
|  |             max_loops=2, | ||||||
|  |             model_name="gpt-4" | ||||||
|  |         ) | ||||||
|  |          | ||||||
|  |         self.legal_reviewer = Agent( | ||||||
|  |             agent_name="Legal-Reviewer", | ||||||
|  |             agent_description="Legal compliance and risk assessment specialist", | ||||||
|  |             system_prompt="""You are a legal review expert focusing on: | ||||||
|  |             1. Regulatory Compliance Check | ||||||
|  |             2. Legal Risk Assessment | ||||||
|  |             3. Contractual Obligation Analysis | ||||||
|  |             4. Privacy Requirement Verification | ||||||
|  |             5. Legal Term Extraction""", | ||||||
|  |             max_loops=2, | ||||||
|  |             model_name="gpt-4" | ||||||
|  |         ) | ||||||
|  |          | ||||||
|  |         self.data_extractor = Agent( | ||||||
|  |             agent_name="Data-Extractor", | ||||||
|  |             agent_description="Structured data extraction specialist", | ||||||
|  |             system_prompt="""You are a data extraction expert specializing in: | ||||||
|  |             1. Named Entity Recognition | ||||||
|  |             2. Relationship Extraction | ||||||
|  |             3. Tabular Data Processing | ||||||
|  |             4. Metadata Extraction | ||||||
|  |             5. Data Standardization""", | ||||||
|  |             max_loops=2, | ||||||
|  |             model_name="gpt-4" | ||||||
|  |         ) | ||||||
|  | 
 | ||||||
|  |     async def process_document(self, document_path): | ||||||
|  |         # Convert document to text | ||||||
|  |         document_text = pdf_to_text(document_path) | ||||||
|  |          | ||||||
|  |         # Parallel processing tasks | ||||||
|  |         tasks = [ | ||||||
|  |             self.document_analyzer.arun(f"Analyze this document: {document_text}"), | ||||||
|  |             self.legal_reviewer.arun(f"Review legal aspects: {document_text}"), | ||||||
|  |             self.data_extractor.arun(f"Extract structured data: {document_text}") | ||||||
|  |         ] | ||||||
|  |          | ||||||
|  |         results = await asyncio.gather(*tasks) | ||||||
|  |          | ||||||
|  |         return { | ||||||
|  |             "document_analysis": results[0], | ||||||
|  |             "legal_review": results[1], | ||||||
|  |             "extracted_data": results[2] | ||||||
|  |         } | ||||||
|  | 
 | ||||||
|  | # Usage | ||||||
|  | processor = DocumentProcessingPipeline() | ||||||
| @ -0,0 +1,69 @@ | |||||||
|  | 
 | ||||||
|  | from swarms.structs.agent import Agent | ||||||
|  | from typing import Dict, List | ||||||
|  | 
 | ||||||
|  | class HealthcareDiagnosticSystem: | ||||||
|  |     def __init__(self): | ||||||
|  |         self.primary_diagnostician = Agent( | ||||||
|  |             agent_name="Primary-Diagnostician", | ||||||
|  |             agent_description="Primary diagnostic analysis specialist", | ||||||
|  |             system_prompt="""You are a primary diagnostician expert in: | ||||||
|  |             1. Initial Symptom Analysis | ||||||
|  |             2. Patient History Evaluation | ||||||
|  |             3. Preliminary Diagnosis Formation | ||||||
|  |             4. Risk Factor Assessment | ||||||
|  |             5. Treatment Priority Determination""", | ||||||
|  |             max_loops=3, | ||||||
|  |             model_name="gpt-4" | ||||||
|  |         ) | ||||||
|  |          | ||||||
|  |         self.specialist_consultant = Agent( | ||||||
|  |             agent_name="Specialist-Consultant", | ||||||
|  |             agent_description="Specialized medical consultation expert", | ||||||
|  |             system_prompt="""You are a medical specialist focusing on: | ||||||
|  |             1. Complex Case Analysis | ||||||
|  |             2. Specialized Treatment Planning | ||||||
|  |             3. Comorbidity Assessment | ||||||
|  |             4. Treatment Risk Evaluation | ||||||
|  |             5. Advanced Diagnostic Interpretation""", | ||||||
|  |             max_loops=3, | ||||||
|  |             model_name="gpt-4" | ||||||
|  |         ) | ||||||
|  |          | ||||||
|  |         self.treatment_coordinator = Agent( | ||||||
|  |             agent_name="Treatment-Coordinator", | ||||||
|  |             agent_description="Treatment planning and coordination specialist", | ||||||
|  |             system_prompt="""You are a treatment coordination expert specializing in: | ||||||
|  |             1. Treatment Plan Development | ||||||
|  |             2. Care Coordination | ||||||
|  |             3. Resource Allocation | ||||||
|  |             4. Recovery Timeline Planning | ||||||
|  |             5. Follow-up Protocol Design""", | ||||||
|  |             max_loops=3, | ||||||
|  |             model_name="gpt-4" | ||||||
|  |         ) | ||||||
|  | 
 | ||||||
|  |     def process_case(self, patient_data: Dict) -> Dict: | ||||||
|  |         # Initial diagnosis | ||||||
|  |         primary_assessment = self.primary_diagnostician.run( | ||||||
|  |             f"Perform initial diagnosis: {patient_data}" | ||||||
|  |         ) | ||||||
|  |          | ||||||
|  |         # Specialist consultation | ||||||
|  |         specialist_review = self.specialist_consultant.run( | ||||||
|  |             f"Review case with initial assessment: {primary_assessment}" | ||||||
|  |         ) | ||||||
|  |          | ||||||
|  |         # Treatment planning | ||||||
|  |         treatment_plan = self.treatment_coordinator.run( | ||||||
|  |             f"Develop treatment plan based on: Primary: {primary_assessment}, Specialist: {specialist_review}" | ||||||
|  |         ) | ||||||
|  |          | ||||||
|  |         return { | ||||||
|  |             "initial_assessment": primary_assessment, | ||||||
|  |             "specialist_review": specialist_review, | ||||||
|  |             "treatment_plan": treatment_plan | ||||||
|  |         } | ||||||
|  | 
 | ||||||
|  | # Usage | ||||||
|  | diagnostic_system = HealthcareDiagnosticSystem() | ||||||
					Loading…
					
					
				
		Reference in new issue