- Implemented `market_system.py` for financial market analysis - Added `enterprise_doc_processor.py` for document classification and processing - Created `diagnostic_system.py` for healthcare diagnostics using agent architecturepull/819/head
parent
7febc47960
commit
b8dda6f92b
@ -0,0 +1,71 @@
|
||||
|
||||
from swarms.structs.agent import Agent
|
||||
from swarms.prompts.finance_agent_sys_prompt import FINANCIAL_AGENT_SYS_PROMPT
|
||||
|
||||
# Technical Analysis Specialist
|
||||
technical_analyst = Agent(
|
||||
agent_name="Technical-Analysis-Expert",
|
||||
agent_description="Advanced technical analysis specialist focusing on complex market patterns",
|
||||
system_prompt="""You are an expert Technical Analyst specializing in:
|
||||
1. Advanced Pattern Recognition (Elliot Wave, Wyckoff Method)
|
||||
2. Multi-timeframe Analysis
|
||||
3. Volume Profile Analysis
|
||||
4. Market Structure Analysis
|
||||
5. Intermarket Analysis""",
|
||||
max_loops=3,
|
||||
model_name="gpt-4"
|
||||
)
|
||||
|
||||
# Fundamental Analysis Expert
|
||||
fundamental_analyst = Agent(
|
||||
agent_name="Fundamental-Analysis-Expert",
|
||||
agent_description="Deep fundamental analysis specialist",
|
||||
system_prompt="""You are a Fundamental Analysis expert focusing on:
|
||||
1. Advanced Financial Statement Analysis
|
||||
2. Economic Indicator Impact Assessment
|
||||
3. Industry Competitive Analysis
|
||||
4. Global Macro Trends
|
||||
5. Corporate Governance Evaluation""",
|
||||
max_loops=3,
|
||||
model_name="gpt-4"
|
||||
)
|
||||
|
||||
# Risk Management Specialist
|
||||
risk_analyst = Agent(
|
||||
agent_name="Risk-Management-Expert",
|
||||
agent_description="Complex risk analysis and management specialist",
|
||||
system_prompt="""You are a Risk Management expert specializing in:
|
||||
1. Portfolio Risk Assessment
|
||||
2. Value at Risk (VaR) Analysis
|
||||
3. Stress Testing Scenarios
|
||||
4. Correlation Analysis
|
||||
5. Risk-Adjusted Performance Metrics""",
|
||||
max_loops=3,
|
||||
model_name="gpt-4"
|
||||
)
|
||||
|
||||
class MarketAnalysisSystem:
|
||||
def __init__(self):
|
||||
self.agents = [technical_analyst, fundamental_analyst, risk_analyst]
|
||||
|
||||
def comprehensive_analysis(self, asset_data):
|
||||
analysis_results = []
|
||||
for agent in self.agents:
|
||||
analysis = agent.run(f"Analyze this asset data: {asset_data}")
|
||||
analysis_results.append({
|
||||
"analyst": agent.agent_name,
|
||||
"analysis": analysis
|
||||
})
|
||||
|
||||
# Synthesize results through risk analyst for final recommendation
|
||||
final_analysis = risk_analyst.run(
|
||||
f"Synthesize these analyses and provide a final recommendation: {analysis_results}"
|
||||
)
|
||||
|
||||
return {
|
||||
"detailed_analysis": analysis_results,
|
||||
"final_recommendation": final_analysis
|
||||
}
|
||||
|
||||
# Usage
|
||||
analysis_system = MarketAnalysisSystem()
|
@ -0,0 +1,67 @@
|
||||
|
||||
from swarms.structs.agent import Agent
|
||||
from swarms.utils.pdf_to_text import pdf_to_text
|
||||
import asyncio
|
||||
|
||||
class DocumentProcessingPipeline:
|
||||
def __init__(self):
|
||||
self.document_analyzer = Agent(
|
||||
agent_name="Document-Analyzer",
|
||||
agent_description="Enterprise document analysis specialist",
|
||||
system_prompt="""You are an expert document analyzer specializing in:
|
||||
1. Complex Document Structure Analysis
|
||||
2. Key Information Extraction
|
||||
3. Compliance Verification
|
||||
4. Document Classification
|
||||
5. Content Validation""",
|
||||
max_loops=2,
|
||||
model_name="gpt-4"
|
||||
)
|
||||
|
||||
self.legal_reviewer = Agent(
|
||||
agent_name="Legal-Reviewer",
|
||||
agent_description="Legal compliance and risk assessment specialist",
|
||||
system_prompt="""You are a legal review expert focusing on:
|
||||
1. Regulatory Compliance Check
|
||||
2. Legal Risk Assessment
|
||||
3. Contractual Obligation Analysis
|
||||
4. Privacy Requirement Verification
|
||||
5. Legal Term Extraction""",
|
||||
max_loops=2,
|
||||
model_name="gpt-4"
|
||||
)
|
||||
|
||||
self.data_extractor = Agent(
|
||||
agent_name="Data-Extractor",
|
||||
agent_description="Structured data extraction specialist",
|
||||
system_prompt="""You are a data extraction expert specializing in:
|
||||
1. Named Entity Recognition
|
||||
2. Relationship Extraction
|
||||
3. Tabular Data Processing
|
||||
4. Metadata Extraction
|
||||
5. Data Standardization""",
|
||||
max_loops=2,
|
||||
model_name="gpt-4"
|
||||
)
|
||||
|
||||
async def process_document(self, document_path):
|
||||
# Convert document to text
|
||||
document_text = pdf_to_text(document_path)
|
||||
|
||||
# Parallel processing tasks
|
||||
tasks = [
|
||||
self.document_analyzer.arun(f"Analyze this document: {document_text}"),
|
||||
self.legal_reviewer.arun(f"Review legal aspects: {document_text}"),
|
||||
self.data_extractor.arun(f"Extract structured data: {document_text}")
|
||||
]
|
||||
|
||||
results = await asyncio.gather(*tasks)
|
||||
|
||||
return {
|
||||
"document_analysis": results[0],
|
||||
"legal_review": results[1],
|
||||
"extracted_data": results[2]
|
||||
}
|
||||
|
||||
# Usage
|
||||
processor = DocumentProcessingPipeline()
|
@ -0,0 +1,69 @@
|
||||
|
||||
from swarms.structs.agent import Agent
|
||||
from typing import Dict, List
|
||||
|
||||
class HealthcareDiagnosticSystem:
|
||||
def __init__(self):
|
||||
self.primary_diagnostician = Agent(
|
||||
agent_name="Primary-Diagnostician",
|
||||
agent_description="Primary diagnostic analysis specialist",
|
||||
system_prompt="""You are a primary diagnostician expert in:
|
||||
1. Initial Symptom Analysis
|
||||
2. Patient History Evaluation
|
||||
3. Preliminary Diagnosis Formation
|
||||
4. Risk Factor Assessment
|
||||
5. Treatment Priority Determination""",
|
||||
max_loops=3,
|
||||
model_name="gpt-4"
|
||||
)
|
||||
|
||||
self.specialist_consultant = Agent(
|
||||
agent_name="Specialist-Consultant",
|
||||
agent_description="Specialized medical consultation expert",
|
||||
system_prompt="""You are a medical specialist focusing on:
|
||||
1. Complex Case Analysis
|
||||
2. Specialized Treatment Planning
|
||||
3. Comorbidity Assessment
|
||||
4. Treatment Risk Evaluation
|
||||
5. Advanced Diagnostic Interpretation""",
|
||||
max_loops=3,
|
||||
model_name="gpt-4"
|
||||
)
|
||||
|
||||
self.treatment_coordinator = Agent(
|
||||
agent_name="Treatment-Coordinator",
|
||||
agent_description="Treatment planning and coordination specialist",
|
||||
system_prompt="""You are a treatment coordination expert specializing in:
|
||||
1. Treatment Plan Development
|
||||
2. Care Coordination
|
||||
3. Resource Allocation
|
||||
4. Recovery Timeline Planning
|
||||
5. Follow-up Protocol Design""",
|
||||
max_loops=3,
|
||||
model_name="gpt-4"
|
||||
)
|
||||
|
||||
def process_case(self, patient_data: Dict) -> Dict:
|
||||
# Initial diagnosis
|
||||
primary_assessment = self.primary_diagnostician.run(
|
||||
f"Perform initial diagnosis: {patient_data}"
|
||||
)
|
||||
|
||||
# Specialist consultation
|
||||
specialist_review = self.specialist_consultant.run(
|
||||
f"Review case with initial assessment: {primary_assessment}"
|
||||
)
|
||||
|
||||
# Treatment planning
|
||||
treatment_plan = self.treatment_coordinator.run(
|
||||
f"Develop treatment plan based on: Primary: {primary_assessment}, Specialist: {specialist_review}"
|
||||
)
|
||||
|
||||
return {
|
||||
"initial_assessment": primary_assessment,
|
||||
"specialist_review": specialist_review,
|
||||
"treatment_plan": treatment_plan
|
||||
}
|
||||
|
||||
# Usage
|
||||
diagnostic_system = HealthcareDiagnosticSystem()
|
Loading…
Reference in new issue