pull/709/head
harshalmore31 4 months ago
parent 9fc582aea1
commit baa4215083

@ -214,27 +214,6 @@ def initialize_agents(
return agents
def get_safe_filename(base_name: str) -> str:
"""
Create a safe filename by removing or replacing invalid characters.
Args:
base_name: The original filename
Returns:
A sanitized filename safe for all operating systems
"""
# Replace invalid characters with underscores
invalid_chars = '<>:"/\\|?*'
filename = ''.join('_' if c in invalid_chars else c for c in base_name)
# Ensure the filename isn't too long (max 255 characters)
if len(filename) > 255:
name_part, ext_part = os.path.splitext(filename)
filename = name_part[:255-len(ext_part)] + ext_part
return filename
async def execute_task(task: str, max_loops: int, data_temp: float, sum_temp: float,
swarm_type: str, agent_keys: List[str], flow: str = None) -> Tuple[Dict[str, str], 'SwarmRouter', str]:
"""
@ -269,75 +248,86 @@ async def execute_task(task: str, max_loops: int, data_temp: float, sum_temp: fl
output_dir = "swarm_outputs"
os.makedirs(output_dir, exist_ok=True)
# Create a simple filename with just a timestamp for uniqueness
# Create a sanitized filename using only safe characters
timestamp = time.strftime("%Y%m%d_%H%M%S")
output_file = f"output_{timestamp}.csv"
output_file = f"swarm_output_{timestamp}.csv"
output_path = os.path.join(output_dir, output_file)
# Initialize SpreadSheetSwarm with the model
# Validate the output path
try:
# Ensure the path is valid and writable
with open(output_path, 'w') as f:
pass
os.remove(output_path) # Clean up the test file
except OSError as e:
error_msg = f"Invalid output path: {str(e)}"
log_event("error", error_msg)
return {}, None, error_msg
# Create and initialize SpreadSheetSwarm
try:
swarm = SpreadSheetSwarm(
agents=agents,
max_loops=max_loops,
name="spreadsheet-swarm",
description="SpreadSheet processing workflow",
save_file_path=output_path, # Use our custom output path
save_file_path=output_path,
workspace_dir=output_dir,
llm=model,
autosave=True,
# Remove append_timestamp and append_run_id as they might not be supported
autosave=True
)
except Exception as e:
error_msg = f"Failed to initialize SpreadSheetSwarm: {str(e)}"
log_event("error", error_msg)
return {}, None, error_msg
# Set the filename directly on the swarm object if possible
if hasattr(swarm, 'filename'):
swarm.filename = output_file
# Execute the swarm with task
# Execute the swarm with proper error handling
try:
result = await asyncio.wait_for(
asyncio.to_thread(lambda: swarm.run(task=task)),
timeout=900
timeout=900 # 15 minutes timeout
)
# Verify the file exists and handle potential filename changes
actual_output_path = output_path
# Verify the output file was created
if not os.path.exists(output_path):
# Look for files matching our base pattern
possible_files = [f for f in os.listdir(output_dir) if f.startswith("output_")]
if possible_files:
actual_output_path = os.path.join(output_dir, possible_files[-1])
# Process SpreadSheetSwarm result
try:
if isinstance(result, dict):
processed_result = {
"CSV File Path": actual_output_path,
"Status": "Success",
"Message": "Spreadsheet processing completed successfully",
"Analysis": result.get("analysis", "No analysis provided"),
"Summary": result.get("summary", "No summary provided")
}
else:
processed_result = {
"CSV File Path": actual_output_path,
"Status": "Success",
"Message": "Spreadsheet processing completed successfully",
"Result": str(result)
}
return processed_result, swarm, ""
except Exception as e:
error_msg = f"Failed to process SpreadSheetSwarm result: {str(e)}"
error_msg = "Output file was not created"
log_event("error", error_msg)
return {}, None, error_msg
return {
"CSV File Path": output_path,
"Status": "Success",
"Message": "Spreadsheet processing completed successfully",
"Result": str(result)
}, swarm, ""
except asyncio.TimeoutError:
error_msg = "SpreadSheetSwarm execution timed out after 900 seconds"
log_event("error", error_msg)
return {}, None, error_msg
except Exception as e:
error_msg = f"SpreadSheetSwarm execution error: {str(e)}"
log_event("error", error_msg)
return {}, None, error_msg
# Rest of the swarm type handling...
elif swarm_type == "AgentRearrange":
if not flow:
return {}, None, "Flow configuration is required for AgentRearrange"
router_kwargs["flow"] = flow
elif swarm_type == "MixtureOfAgents":
if len(agents) < 2:
return {}, None, "MixtureOfAgents requires at least 2 agents"
router_kwargs.update({
"aggregator_agent": agents[-1],
"layers": max_loops
})
# Create router and execute task for non-SpreadSheetSwarm types
if swarm_type != "SpreadSheetSwarm":
try:
timeout = 450
timeout = 450 # Default timeout
await asyncio.sleep(0.5)
router = SwarmRouter(**router_kwargs)
@ -348,35 +338,25 @@ async def execute_task(task: str, max_loops: int, data_temp: float, sum_temp: fl
timeout=timeout
)
# Process results based on swarm type
if swarm_type == "ConcurrentWorkflow":
responses = _extract_concurrent_responses(str(result), agents)
elif swarm_type == "SequentialWorkflow":
if isinstance(result, dict):
responses = {f"Step {i+1}": str(v) for i, v in enumerate(result.values())}
else:
responses = {"Final Output": str(result)}
elif swarm_type == "AgentRearrange":
if isinstance(result, dict):
responses = {f"Step {i+1}": str(v) for i, v in enumerate(result.values())}
else:
flow_steps = flow.split("->")
responses = {f"Step {i+1} ({step.strip()})": str(part)
for i, (step, part) in enumerate(zip(flow_steps, str(result).split("[NEXT]")))}
elif swarm_type == "MixtureOfAgents":
if isinstance(result, dict):
responses = {
**{f"Agent {i+1}": str(v) for i, v in enumerate(result.get("individual_outputs", []))},
"Aggregated Summary": str(result.get("aggregated_output", "No aggregated output"))
}
else:
responses = {"Final Output": str(result)}
else: # Auto or unknown type
# Process results
def process_result(result):
"""Process and standardize the result output."""
if isinstance(result, str):
try:
# Attempt to parse as JSON
parsed_result = json.loads(result)
return parsed_result
except json.JSONDecodeError:
# Fallback to string result
return {"Final Output": result}
if isinstance(result, dict):
responses = {str(k): str(v) for k, v in result.items()}
else:
responses = {"Final Output": str(result)}
# Clean and standardize dictionary results
return {str(k): str(v) for k, v in result.items()}
return {"Final Output": str(result)}
responses = process_result(result)
return responses, router, ""
except asyncio.TimeoutError:
@ -738,67 +718,28 @@ def create_app():
# Format output based on swarm type
output_lines = []
if swarm_type == "SpreadSheetSwarm":
output_lines.append("=== Spreadsheet Swarm Results ===\n")
output_lines.append(f"CSV File: {responses.get('CSV File Path', 'No file generated')}")
output_lines.append(f"Status: {responses.get('Status', 'Unknown')}")
output_lines.append(f"Message: {responses.get('Message', '')}")
if 'Analysis' in responses:
output_lines.append("\n=== Analysis ===")
output_lines.append(responses['Analysis'])
if 'Summary' in responses:
output_lines.append("\n=== Summary ===")
output_lines.append(responses['Summary'])
if 'Result' in responses:
output_lines.append("\n=== Additional Results ===")
output_lines.append(responses['Result'])
elif swarm_type == "ConcurrentWorkflow":
output_lines.append("=== Concurrent Workflow Results ===\n")
for agent_name, response in responses.items():
output_lines.append(f"\n--- {agent_name} ---")
output_lines.append(response.strip())
output_lines.append("-" * 50)
elif swarm_type == "SequentialWorkflow":
output_lines.append("=== Sequential Workflow Results ===\n")
for step, response in responses.items():
output_lines.append(f"\n--- {step} ---")
output_lines.append(response.strip())
output_lines.append("-" * 50)
elif swarm_type == "AgentRearrange":
output_lines.append("=== Agent Rearrange Results ===\n")
for step, response in responses.items():
output_lines.append(f"\n--- {step} ---")
output_lines.append(response.strip())
output_lines.append("-" * 50)
elif swarm_type == "MixtureOfAgents":
output_lines.append("=== Mixture of Agents Results ===\n")
# First show individual agent outputs
if router.swarm_type == "AgentRearrange":
for key, value in responses.items():
output_lines.append(f"### Step {key} ###\n{value}\n{'='*50}\n")
elif router.swarm_type == "MixtureOfAgents":
# Add individual agent outputs
for key, value in responses.items():
if key != "Aggregated Summary":
output_lines.append(f"\n--- {key} ---")
output_lines.append(value.strip())
output_lines.append("-" * 50)
# Then show the aggregated summary at the end
output_lines.append(f"### {key} ###\n{value}\n")
# Add aggregated summary at the end
if "Aggregated Summary" in responses:
output_lines.append("\n=== Aggregated Summary ===")
output_lines.append(responses["Aggregated Summary"])
output_lines.append("=" * 50)
else: # Auto or unknown type
output_lines.append("=== Results ===\n")
output_lines.append(f"\n### Aggregated Summary ###\n{responses['Aggregated Summary']}\n{'='*50}\n")
elif router.swarm_type == "SpreadSheetSwarm":
output_lines.append(f"### Spreadsheet Output ###\n{responses.get('CSV File Path', 'No file path provided')}\n{'='*50}\n")
elif router.swarm_type == "ConcurrentWorkflow":
for key, value in responses.items():
output_lines.append(f"\n--- {key} ---")
output_lines.append(value.strip())
output_lines.append("-" * 50)
output_lines.append(f"### {key} ###\n{value}\n{'='*50}\n")
else: # SequentialWorkflow, auto
if isinstance(responses, dict):
for key, value in responses.items():
output_lines.append(f"### {key} ###\n{value}\n{'='*50}\n")
else:
output_lines.append(str(responses))
yield "\n".join(output_lines), "Completed"

Loading…
Cancel
Save