Merge 3a034476f4
into 175bd05ce5
commit
be5a744319
@ -0,0 +1,32 @@
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
class ToolAgentError(Exception):
|
||||
"""Base exception for all tool agent errors."""
|
||||
def __init__(self, message: str, details: Optional[Dict[str, Any]] = None):
|
||||
self.message = message
|
||||
self.details = details or {}
|
||||
super().__init__(self.message)
|
||||
|
||||
class ToolExecutionError(ToolAgentError):
|
||||
"""Raised when a tool fails to execute."""
|
||||
def __init__(self, tool_name: str, error: Exception, details: Optional[Dict[str, Any]] = None):
|
||||
message = f"Failed to execute tool '{tool_name}': {str(error)}"
|
||||
super().__init__(message, details)
|
||||
|
||||
class ToolValidationError(ToolAgentError):
|
||||
"""Raised when tool parameters fail validation."""
|
||||
def __init__(self, tool_name: str, param_name: str, error: str, details: Optional[Dict[str, Any]] = None):
|
||||
message = f"Validation error for tool '{tool_name}' parameter '{param_name}': {error}"
|
||||
super().__init__(message, details)
|
||||
|
||||
class ToolNotFoundError(ToolAgentError):
|
||||
"""Raised when a requested tool is not found."""
|
||||
def __init__(self, tool_name: str, details: Optional[Dict[str, Any]] = None):
|
||||
message = f"Tool '{tool_name}' not found"
|
||||
super().__init__(message, details)
|
||||
|
||||
class ToolParameterError(ToolAgentError):
|
||||
"""Raised when tool parameters are invalid."""
|
||||
def __init__(self, tool_name: str, error: str, details: Optional[Dict[str, Any]] = None):
|
||||
message = f"Invalid parameters for tool '{tool_name}': {error}"
|
||||
super().__init__(message, details)
|
@ -1,156 +1,243 @@
|
||||
from typing import Any, Optional, Callable
|
||||
from swarms.tools.json_former import Jsonformer
|
||||
from swarms.utils.loguru_logger import initialize_logger
|
||||
|
||||
logger = initialize_logger(log_folder="tool_agent")
|
||||
|
||||
from typing import List, Optional, Dict, Any, Callable
|
||||
from loguru import logger
|
||||
from swarms.agents.exceptions import (
|
||||
ToolAgentError,
|
||||
ToolExecutionError,
|
||||
ToolValidationError,
|
||||
ToolNotFoundError,
|
||||
ToolParameterError
|
||||
)
|
||||
|
||||
class ToolAgent:
|
||||
"""
|
||||
Represents a tool agent that performs a specific task using a model and tokenizer.
|
||||
A wrapper class for vLLM that provides a similar interface to LiteLLM.
|
||||
This class handles model initialization and inference using vLLM.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str = "meta-llama/Llama-2-7b-chat-hf",
|
||||
system_prompt: Optional[str] = None,
|
||||
stream: bool = False,
|
||||
temperature: float = 0.5,
|
||||
max_tokens: int = 4000,
|
||||
max_completion_tokens: int = 4000,
|
||||
tools_list_dictionary: Optional[List[Dict[str, Any]]] = None,
|
||||
tool_choice: str = "auto",
|
||||
parallel_tool_calls: bool = False,
|
||||
retry_attempts: int = 3,
|
||||
retry_interval: float = 1.0,
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Initialize the vLLM wrapper with the given parameters.
|
||||
Args:
|
||||
name (str): The name of the tool agent.
|
||||
description (str): A description of the tool agent.
|
||||
model (Any): The model used by the tool agent.
|
||||
tokenizer (Any): The tokenizer used by the tool agent.
|
||||
json_schema (Any): The JSON schema used by the tool agent.
|
||||
*args: Variable length arguments.
|
||||
**kwargs: Keyword arguments.
|
||||
|
||||
Attributes:
|
||||
name (str): The name of the tool agent.
|
||||
description (str): A description of the tool agent.
|
||||
model (Any): The model used by the tool agent.
|
||||
tokenizer (Any): The tokenizer used by the tool agent.
|
||||
json_schema (Any): The JSON schema used by the tool agent.
|
||||
|
||||
Methods:
|
||||
run: Runs the tool agent for a specific task.
|
||||
model_name (str): The name of the model to use. Defaults to "meta-llama/Llama-2-7b-chat-hf".
|
||||
system_prompt (str, optional): The system prompt to use. Defaults to None.
|
||||
stream (bool): Whether to stream the output. Defaults to False.
|
||||
temperature (float): The temperature for sampling. Defaults to 0.5.
|
||||
max_tokens (int): The maximum number of tokens to generate. Defaults to 4000.
|
||||
max_completion_tokens (int): The maximum number of completion tokens. Defaults to 4000.
|
||||
tools_list_dictionary (List[Dict[str, Any]], optional): List of available tools. Defaults to None.
|
||||
tool_choice (str): How to choose tools. Defaults to "auto".
|
||||
parallel_tool_calls (bool): Whether to allow parallel tool calls. Defaults to False.
|
||||
retry_attempts (int): Number of retry attempts for failed operations. Defaults to 3.
|
||||
retry_interval (float): Time to wait between retries in seconds. Defaults to 1.0.
|
||||
"""
|
||||
self.model_name = model_name
|
||||
self.system_prompt = system_prompt
|
||||
self.stream = stream
|
||||
self.temperature = temperature
|
||||
self.max_tokens = max_tokens
|
||||
self.max_completion_tokens = max_completion_tokens
|
||||
self.tools_list_dictionary = tools_list_dictionary
|
||||
self.tool_choice = tool_choice
|
||||
self.parallel_tool_calls = parallel_tool_calls
|
||||
self.retry_attempts = retry_attempts
|
||||
self.retry_interval = retry_interval
|
||||
|
||||
# Initialize vLLM
|
||||
try:
|
||||
self.llm = LLM(model=model_name, **kwargs)
|
||||
self.sampling_params = SamplingParams(
|
||||
temperature=temperature,
|
||||
max_tokens=max_tokens,
|
||||
)
|
||||
except Exception as e:
|
||||
raise ToolExecutionError(
|
||||
"model_initialization",
|
||||
e,
|
||||
{"model_name": model_name, "kwargs": kwargs}
|
||||
)
|
||||
|
||||
def _validate_tool(self, tool_name: str, parameters: Dict[str, Any]) -> None:
|
||||
"""
|
||||
Validate tool parameters before execution.
|
||||
Args:
|
||||
tool_name (str): Name of the tool to validate
|
||||
parameters (Dict[str, Any]): Parameters to validate
|
||||
Raises:
|
||||
Exception: If an error occurs while running the tool agent.
|
||||
|
||||
|
||||
Example:
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from swarms import ToolAgent
|
||||
ToolValidationError: If validation fails
|
||||
"""
|
||||
if not self.tools_list_dictionary:
|
||||
raise ToolValidationError(
|
||||
tool_name,
|
||||
"parameters",
|
||||
"No tools available for validation"
|
||||
)
|
||||
|
||||
tool_spec = next(
|
||||
(tool for tool in self.tools_list_dictionary if tool["name"] == tool_name),
|
||||
None
|
||||
)
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("databricks/dolly-v2-12b")
|
||||
tokenizer = AutoTokenizer.from_pretrained("databricks/dolly-v2-12b")
|
||||
if not tool_spec:
|
||||
raise ToolNotFoundError(tool_name)
|
||||
|
||||
json_schema = {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"name": {"type": "string"},
|
||||
"age": {"type": "number"},
|
||||
"is_student": {"type": "boolean"},
|
||||
"courses": {
|
||||
"type": "array",
|
||||
"items": {"type": "string"}
|
||||
}
|
||||
}
|
||||
required_params = {
|
||||
param["name"] for param in tool_spec["parameters"]
|
||||
if param.get("required", True)
|
||||
}
|
||||
|
||||
task = "Generate a person's information based on the following schema:"
|
||||
agent = ToolAgent(model=model, tokenizer=tokenizer, json_schema=json_schema)
|
||||
generated_data = agent.run(task)
|
||||
missing_params = required_params - set(parameters.keys())
|
||||
if missing_params:
|
||||
raise ToolParameterError(
|
||||
tool_name,
|
||||
f"Missing required parameters: {', '.join(missing_params)}"
|
||||
)
|
||||
|
||||
print(generated_data)
|
||||
def _execute_with_retry(self, func: Callable, *args, **kwargs) -> Any:
|
||||
"""
|
||||
Execute a function with retry logic.
|
||||
Args:
|
||||
func (Callable): Function to execute
|
||||
*args: Positional arguments for the function
|
||||
**kwargs: Keyword arguments for the function
|
||||
Returns:
|
||||
Any: Result of the function execution
|
||||
Raises:
|
||||
ToolExecutionError: If all retry attempts fail
|
||||
"""
|
||||
last_error = None
|
||||
for attempt in range(self.retry_attempts):
|
||||
try:
|
||||
return func(*args, **kwargs)
|
||||
except Exception as e:
|
||||
last_error = e
|
||||
logger.warning(
|
||||
f"Attempt {attempt + 1}/{self.retry_attempts} failed: {str(e)}"
|
||||
)
|
||||
if attempt < self.retry_attempts - 1:
|
||||
time.sleep(self.retry_interval)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
name: str = "Function Calling Agent",
|
||||
description: str = "Generates a function based on the input json schema and the task",
|
||||
model: Any = None,
|
||||
tokenizer: Any = None,
|
||||
json_schema: Any = None,
|
||||
max_number_tokens: int = 500,
|
||||
parsing_function: Optional[Callable] = None,
|
||||
llm: Any = None,
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(
|
||||
agent_name=name,
|
||||
agent_description=description,
|
||||
llm=llm,
|
||||
**kwargs,
|
||||
raise ToolExecutionError(
|
||||
func.__name__,
|
||||
last_error,
|
||||
{"attempts": self.retry_attempts}
|
||||
)
|
||||
self.name = name
|
||||
self.description = description
|
||||
self.model = model
|
||||
self.tokenizer = tokenizer
|
||||
self.json_schema = json_schema
|
||||
self.max_number_tokens = max_number_tokens
|
||||
self.parsing_function = parsing_function
|
||||
|
||||
def run(self, task: str, *args, **kwargs):
|
||||
def run(self, task: str, *args, **kwargs) -> str:
|
||||
"""
|
||||
Run the tool agent for the specified task.
|
||||
|
||||
Args:
|
||||
task (str): The task to be performed by the tool agent.
|
||||
*args: Variable length argument list.
|
||||
**kwargs: Arbitrary keyword arguments.
|
||||
|
||||
Returns:
|
||||
The output of the tool agent.
|
||||
|
||||
Raises:
|
||||
Exception: If an error occurs during the execution of the tool agent.
|
||||
ToolExecutionError: If an error occurs during execution.
|
||||
"""
|
||||
try:
|
||||
if self.model:
|
||||
logger.info(f"Running {self.name} for task: {task}")
|
||||
self.toolagent = Jsonformer(
|
||||
model=self.model,
|
||||
tokenizer=self.tokenizer,
|
||||
json_schema=self.json_schema,
|
||||
llm=self.llm,
|
||||
prompt=task,
|
||||
max_number_tokens=self.max_number_tokens,
|
||||
*args,
|
||||
**kwargs,
|
||||
if not self.llm:
|
||||
raise ToolExecutionError(
|
||||
"run",
|
||||
Exception("LLM not initialized"),
|
||||
{"task": task}
|
||||
)
|
||||
|
||||
if self.parsing_function:
|
||||
out = self.parsing_function(self.toolagent())
|
||||
else:
|
||||
out = self.toolagent()
|
||||
|
||||
return out
|
||||
elif self.llm:
|
||||
logger.info(f"Running {self.name} for task: {task}")
|
||||
self.toolagent = Jsonformer(
|
||||
json_schema=self.json_schema,
|
||||
llm=self.llm,
|
||||
prompt=task,
|
||||
max_number_tokens=self.max_number_tokens,
|
||||
*args,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
if self.parsing_function:
|
||||
out = self.parsing_function(self.toolagent())
|
||||
else:
|
||||
out = self.toolagent()
|
||||
logger.info(f"Running task: {task}")
|
||||
|
||||
return out
|
||||
# Prepare the prompt
|
||||
prompt = self._prepare_prompt(task)
|
||||
|
||||
else:
|
||||
raise Exception(
|
||||
"Either model or llm should be provided to the"
|
||||
" ToolAgent"
|
||||
# Execute with retry logic
|
||||
outputs = self._execute_with_retry(
|
||||
self.llm.generate,
|
||||
prompt,
|
||||
self.sampling_params
|
||||
)
|
||||
|
||||
response = outputs[0].outputs[0].text.strip()
|
||||
return response
|
||||
|
||||
except Exception as error:
|
||||
logger.error(
|
||||
f"Error running {self.name} for task: {task}"
|
||||
logger.error(f"Error running task: {error}")
|
||||
raise ToolExecutionError(
|
||||
"run",
|
||||
error,
|
||||
{"task": task, "args": args, "kwargs": kwargs}
|
||||
)
|
||||
raise error
|
||||
|
||||
def __call__(self, task: str, *args, **kwargs):
|
||||
def _prepare_prompt(self, task: str) -> str:
|
||||
"""
|
||||
Prepare the prompt for the given task.
|
||||
Args:
|
||||
task (str): The task to prepare the prompt for.
|
||||
Returns:
|
||||
str: The prepared prompt.
|
||||
"""
|
||||
if self.system_prompt:
|
||||
return f"{self.system_prompt}\n\nUser: {task}\nAssistant:"
|
||||
return f"User: {task}\nAssistant:"
|
||||
|
||||
def __call__(self, task: str, *args, **kwargs) -> str:
|
||||
"""
|
||||
Call the model for the given task.
|
||||
Args:
|
||||
task (str): The task to run the model for.
|
||||
*args: Additional positional arguments.
|
||||
**kwargs: Additional keyword arguments.
|
||||
Returns:
|
||||
str: The model's response.
|
||||
"""
|
||||
return self.run(task, *args, **kwargs)
|
||||
|
||||
def batched_run(self, tasks: List[str], batch_size: int = 10) -> List[str]:
|
||||
"""
|
||||
Run the model for multiple tasks in batches.
|
||||
Args:
|
||||
tasks (List[str]): List of tasks to run.
|
||||
batch_size (int): Size of each batch. Defaults to 10.
|
||||
Returns:
|
||||
List[str]: List of model responses.
|
||||
Raises:
|
||||
ToolExecutionError: If an error occurs during batch execution.
|
||||
"""
|
||||
logger.info(f"Running tasks in batches of size {batch_size}. Total tasks: {len(tasks)}")
|
||||
results = []
|
||||
|
||||
try:
|
||||
for i in range(0, len(tasks), batch_size):
|
||||
batch = tasks[i:i + batch_size]
|
||||
for task in batch:
|
||||
logger.info(f"Running task: {task}")
|
||||
try:
|
||||
result = self.run(task)
|
||||
results.append(result)
|
||||
except ToolExecutionError as e:
|
||||
logger.error(f"Failed to execute task '{task}': {e}")
|
||||
results.append(f"Error: {str(e)}")
|
||||
continue
|
||||
|
||||
logger.info("Completed all tasks.")
|
||||
return results
|
||||
|
||||
except Exception as error:
|
||||
logger.error(f"Error in batch execution: {error}")
|
||||
raise ToolExecutionError(
|
||||
"batched_run",
|
||||
error,
|
||||
{"tasks": tasks, "batch_size": batch_size}
|
||||
)
|
||||
|
Loading…
Reference in new issue