Update multi_agent_collab_new.py

pull/592/head
kirill670 4 months ago committed by GitHub
parent edc293cb6f
commit c2cb3f3512
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -1,631 +1,92 @@
import os
import random
import time
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime, timedelta
from threading import Lock
from typing import Any, Callable, Dict, List, Optional
from swarms.structs.base_swarm import BaseSwarm
from swarms.structs.agent import Agent
from typing import Optional, Sequence, List, Dict, Any, Coroutine
from swarms_memory import BaseVectorDatabase
from loguru import logger
from pydantic import BaseModel, Field
from swarms import Agent, create_file_in_folder
from swarms.schemas.agent_step_schemas import ManySteps
class MultiAgentCollaborationSchema(BaseModel):
name: str = Field(..., title="Name of the collaboration")
description: str = Field(
..., title="Description of the collaboration"
)
agent_outputs: List[ManySteps] = Field(
..., title="List of agent outputs"
)
timestamp: str = Field(
default_factory=lambda: time.strftime("%Y-%m-%d %H:%M:%S"),
title="Timestamp of the collaboration",
)
number_of_agents: int = Field(
..., title="Number of agents in the collaboration"
)
class Cache:
def __init__(self, expiration_time: Optional[timedelta] = None):
"""
Initializes the cache.
:param expiration_time: Time after which a cache entry should expire.
"""
self.cache: Dict[str, Dict[str, Any]] = {}
self.expiration_time = expiration_time
self.lock = Lock()
def set(self, key: str, value: Any):
"""
Stores a value in the cache with an optional expiration time.
:param key: Cache key.
:param value: Value to store in the cache.
"""
with self.lock:
expiry = (
datetime.utcnow() + self.expiration_time
if self.expiration_time
else None
)
self.cache[key] = {"value": value, "expiry": expiry}
logger.debug(
f"Cache set for key '{key}' with expiry {expiry}"
)
def get(self, key: str) -> Optional[Any]:
"""
Retrieves a value from the cache.
:param key: Cache key.
:return: Cached value if available and not expired, else None.
"""
with self.lock:
if key in self.cache:
entry = self.cache[key]
if (
entry["expiry"]
and entry["expiry"] < datetime.utcnow()
):
logger.debug(f"Cache expired for key '{key}'")
del self.cache[key]
return None
logger.debug(f"Cache hit for key '{key}'")
return entry["value"]
logger.debug(f"Cache miss for key '{key}'")
return None
def random_selector(agents: List[Agent], iteration: int) -> Agent:
"""
Selects a random agent.
:param agents: List of agents to select from.
:param iteration: The current iteration number (unused).
:return: A randomly selected agent.
"""
return random.choice(agents)
def first_agent_selector(
agents: List[Agent], iteration: int
) -> Agent:
"""
Always selects the first agent in the list.
:param agents: List of agents to select from.
:param iteration: The current iteration number (unused).
:return: The first agent in the list.
"""
return agents[0]
def last_agent_selector(agents: List[Agent], iteration: int) -> Agent:
"""
Always selects the last agent in the list.
:param agents: List of agents to select from.
:param iteration: The current iteration number (unused).
:return: The last agent in the list.
"""
return agents[-1]
def reverse_round_robin_selector(
agents: List[Agent], iteration: int
) -> Agent:
"""
Selects agents in reverse round-robin order.
:param agents: List of agents to select from.
:param iteration: The current iteration number.
:return: The agent selected in reverse round-robin order.
"""
index = -((iteration % len(agents)) + 1)
return agents[index]
def even_iteration_selector(
agents: List[Agent], iteration: int
) -> Agent:
"""
Selects the agent based on even iteration; defaults to the first agent if odd.
:param agents: List of agents to select from.
:param iteration: The current iteration number.
:return: The selected agent based on even iteration.
"""
return (
agents[iteration % len(agents)]
if iteration % 2 == 0
else agents[0]
)
def odd_iteration_selector(
agents: List[Agent], iteration: int
) -> Agent:
"""
Selects the agent based on odd iteration; defaults to the last agent if even.
:param agents: List of agents to select from.
:param iteration: The current iteration number.
:return: The selected agent based on odd iteration.
"""
return (
agents[iteration % len(agents)]
if iteration % 2 != 0
else agents[-1]
)
def weighted_random_selector(
agents: List[Agent], iteration: int
) -> Agent:
"""
Selects an agent based on weighted random choice, with the first agent having a higher weight.
:param agents: List of agents to select from.
:param iteration: The current iteration number (unused).
:return: A randomly selected agent with weighted preference.
"""
weights = [1] * len(agents)
weights[0] = 2 # Give the first agent higher weight
return random.choices(agents, weights=weights, k=1)[0]
def increasing_weight_selector(
agents: List[Agent], iteration: int
) -> Agent:
"""
Selects an agent based on increasing weight with iteration (favoring later agents).
:param agents: List of agents to select from.
:param iteration: The current iteration number (unused).
:return: A randomly selected agent with increasing weight.
"""
weights = [i + 1 for i in range(len(agents))]
return random.choices(agents, weights=weights, k=1)[0]
def decreasing_weight_selector(
agents: List[Agent], iteration: int
) -> Agent:
"""
Selects an agent based on decreasing weight with iteration (favoring earlier agents).
:param agents: List of agents to select from.
:param iteration: The current iteration number (unused).
:return: A randomly selected agent with decreasing weight.
"""
weights = [len(agents) - i for i in range(len(agents))]
return random.choices(agents, weights=weights, k=1)[0]
def round_robin_with_skip_selector(
agents: List[Agent], iteration: int
) -> Agent:
"""
Selects agents in a round-robin fashion but skips every third agent.
:param agents: List of agents to select from.
:param iteration: The current iteration number.
:return: The selected agent with a skipping pattern.
"""
index = (iteration * 2) % len(agents)
return agents[index]
def priority_selector(
agents: List[Agent], iteration: int, priority_index: int = 0
) -> Agent:
"""
Selects an agent based on a priority index, always selecting the agent at the given index.
:param agents: List of agents to select from.
:param iteration: The current iteration number (unused).
:param priority_index: The index of the agent with priority.
:return: The agent at the priority index.
"""
return agents[priority_index]
def dynamic_priority_selector(
agents: List[Agent], iteration: int, priorities: List[int] = None
) -> Agent:
"""
Selects an agent based on dynamic priorities, which can change over iterations.
:param agents: List of agents to select from.
:param iteration: The current iteration number.
:param priorities: A list of priorities for each agent, determining their selection likelihood.
:return: The selected agent based on dynamic priorities.
"""
if priorities is None:
priorities = [1] * len(agents)
index = random.choices(
range(len(agents)), weights=priorities, k=1
)[0]
return agents[index]
def alternating_selector(
agents: List[Agent], iteration: int
) -> Agent:
"""
Alternates between the first and last agent.
:param agents: List of agents to select from.
:param iteration: The current iteration number.
:return: The first agent if the iteration is even, the last if odd.
"""
return agents[0] if iteration % 2 == 0 else agents[-1]
def middle_agent_selector(
agents: List[Agent], iteration: int
) -> Agent:
"""
Always selects the middle agent.
:param agents: List of agents to select from.
:param iteration: The current iteration number (unused).
:return: The middle agent in the list.
"""
index = len(agents) // 2
return agents[index]
def weighted_round_robin_selector(
agents: List[Agent], iteration: int, weights: List[int] = None
) -> Agent:
"""
Selects agents in a weighted round-robin fashion.
:param agents: List of agents to select from.
:param iteration: The current iteration number.
:param weights: A list of weights to determine the likelihood of selection.
:return: The selected agent based on weighted round-robin.
"""
if weights is None:
weights = [1] * len(agents)
index = random.choices(range(len(agents)), weights=weights, k=1)[
0
]
return agents[index]
def even_odd_priority_selector(
agents: List[Agent], iteration: int
) -> Agent:
"""
Gives priority to even-indexed agents on even iterations and odd-indexed agents on odd iterations.
:param agents: List of agents to select from.
:param iteration: The current iteration number.
:return: The selected agent based on even/odd priority.
"""
even_agents = agents[::2]
odd_agents = agents[1::2]
return (
random.choice(even_agents)
if iteration % 2 == 0
else random.choice(odd_agents)
)
def reverse_selector(agents: List[Agent], iteration: int) -> Agent:
"""
Selects agents in reverse order starting from the last agent.
:param agents: List of agents to select from.
:param iteration: The current iteration number.
:return: The agent selected in reverse order.
"""
return agents[-(iteration % len(agents)) - 1]
def frequent_first_selector(
agents: List[Agent], iteration: int, frequency: int = 3
) -> Agent:
"""
Frequently selects the first agent every 'n' iterations, otherwise selects in round-robin.
:param agents: List of agents to select from.
:param iteration: The current iteration number.
:param frequency: The frequency of selecting the first agent.
:return: The selected agent with frequent first preference.
"""
if iteration % frequency == 0:
return agents[0]
return agents[iteration % len(agents)]
def frequent_last_selector(
agents: List[Agent], iteration: int, frequency: int = 3
) -> Agent:
"""
Frequently selects the last agent every 'n' iterations, otherwise selects in round-robin.
:param agents: List of agents to select from.
:param iteration: The current iteration number.
:param frequency: The frequency of selecting the last agent.
:return: The selected agent with frequent last preference.
"""
if iteration % frequency == 0:
return agents[-1]
return agents[iteration % len(agents)]
def random_skip_selector(
agents: List[Agent], iteration: int, skip_probability: float = 0.5
) -> Agent:
"""
Randomly skips agents with a given probability, selecting the next in line.
:param agents: List of agents to select from.
:param iteration: The current iteration number.
:param skip_probability: The probability of skipping an agent.
:return: The selected agent with random skips.
"""
while random.random() < skip_probability:
iteration += 1
return agents[iteration % len(agents)]
def adaptive_selector(
agents: List[Agent],
iteration: int,
performance_metric: Callable[[Agent], float] = None,
) -> Agent:
"""
Selects the agent based on a performance metric, favoring better-performing agents.
:param agents: List of agents to select from.
:param iteration: The current iteration number.
:param performance_metric: A function to determine the performance of each agent.
:return: The selected agent based on adaptive performance.
"""
if performance_metric is None:
def performance_metric(agent):
return (
random.random()
) # Default random performance metric
performance_scores = [
performance_metric(agent) for agent in agents
]
best_agent_index = performance_scores.index(
max(performance_scores)
)
return agents[best_agent_index]
class MultiAgentCollaboration:
"""
Initializes the MultiAgentCollaboration.
:param agents: List of Agent instances.
:param speaker_fn: Function to select the agent for each loop.
:param max_loops: Maximum number of iterations.
:param use_cache: Boolean to enable or disable caching.
:param autosave_on: Boolean to enable or disable autosaving the output.
"""
class FederatedSwarm(BaseSwarm):
def __init__(
self,
name: str = "MultiAgentCollaboration",
description: str = "A collaboration of multiple agents",
agents: List[Agent] = [],
speaker_fn: Callable[[List[Agent], int], Agent] = [],
max_loops: int = 1,
use_cache: bool = True,
autosave_on: bool = True,
name: Optional[str] = "FederatedSwarm",
description: Optional[str] = "A swarm of swarms",
swarms: Optional[Sequence[BaseSwarm]] = None,
memory_system: Optional[BaseVectorDatabase] = None,
max_loops: Optional[int] = 4,
*args,
**kwargs,
):
super().__init__(
name=name, description=description, *args, **kwargs
)
self.name = name
self.description = description
self.agents = agents
self.speaker_fn = speaker_fn
self.swarms: List[BaseSwarm] = swarms if swarms is not None else []
self.memory_system = memory_system
self.max_loops = max_loops
self.autosave_on = autosave_on
self.lock = Lock()
self.max_workers = os.cpu_count()
self.use_cache = use_cache
logger.info(
f"Initialized MultiAgentCollaboration with {len(agents)} agents and max_loops={max_loops}"
)
# Cache
self.cache = Cache(expiration_time=timedelta(minutes=5))
# Output schema
self.output_schema = MultiAgentCollaborationSchema(
name=name,
description=description,
agent_outputs=[],
number_of_agents=len(agents),
)
def _execute_agent(self, agent: Agent, task: str, loop: int):
"""
Executes an agent's run method and records the output.
:param agent: The Agent instance to execute.
:param task: The input prompt for the agent.
:param loop: Current loop iteration.
"""
logger.debug(
f"Executing agent '{agent.agent_name}' on loop {loop}"
)
output = agent.run(task)
agent_output = agent.agent_output
self.output_schema.agent_outputs.append(agent_output)
return output
def run(self, task: str, *args, **kwargs):
"""
Runs the agents in sequence, passing the output of one as the input to the next.
:param task: The input prompt to pass to each agent.
:return: The final output of the last agent.
"""
logger.info("Starting MultiAgentCollaboration run.")
current_task = task
with ThreadPoolExecutor(
max_workers=self.max_workers
) as executor:
for i in range(self.max_loops):
selected_agent = self.speaker_fn(self.agents, i)
logger.debug(
f"Loop {i}: Selected agent '{selected_agent.agent_name}'"
)
future = executor.submit(
self._execute_agent,
selected_agent,
current_task,
i,
*args,
**kwargs,
)
try:
current_task = (
future.result()
) # The output of this agent becomes the input for the next
except Exception as exc:
logger.error(
f"Loop {i} generated an exception: {exc}"
)
break
logger.info("Completed MultiAgentCollaboration run.")
if self.autosave_on is True:
self.save_file()
return self.return_output_schema_json()
def save_file(self):
time = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
create_file_in_folder(
"multi_agent_collab_folder",
f"{self.name}_time_{time}_output.json",
self.return_output_schema_json(),
)
def get_outputs_dict(self):
"""
Retrieves all recorded agent outputs as a list of dictionaries.
:return: List of dictionaries representing AgentOutput instances.
"""
return self.output_schema.model_dump()
def return_output_schema_json(self):
return self.output_schema.model_dump_json(indent=4)
def round_robin_speaker(agents: List[Agent], iteration: int) -> Agent:
"""
Selects an agent from the given list of agents using round-robin scheduling.
Args:
agents (List[Agent]): The list of agents to select from.
iteration (int): The current iteration number.
Returns:
Agent: The selected agent.
"""
selected = agents[iteration % len(agents)]
logger.debug(
f"Round-robin selected agent '{selected.agent_name}' for iteration {iteration}"
)
return selected
# Example usage
if __name__ == "__main__":
from swarm_models import OpenAIChat
from swarms.prompts.finance_agent_sys_prompt import (
FINANCIAL_AGENT_SYS_PROMPT,
)
# Get the OpenAI API key from the environment variable
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
logger.error(
"OpenAI API key not found in environment variables."
)
exit(1)
# Create instances of the OpenAIChat class
model = OpenAIChat(
api_key=api_key, model_name="gpt-4o-mini", temperature=0.1
)
# Initialize agents
agent1 = Agent(
agent_name="Financial-Analysis-Agent_1",
system_prompt=FINANCIAL_AGENT_SYS_PROMPT,
llm=model,
max_loops=1,
dynamic_temperature_enabled=True,
saved_state_path="finance_agent_1.json",
user_name="swarms_corp",
retry_attempts=1,
context_length=200000,
return_step_meta=False,
)
agent2 = Agent(
agent_name="Financial-Analysis-Agent_2",
system_prompt=FINANCIAL_AGENT_SYS_PROMPT,
llm=model,
max_loops=1,
dynamic_temperature_enabled=True,
saved_state_path="finance_agent_2.json",
user_name="swarms_corp",
retry_attempts=1,
context_length=200000,
return_step_meta=False,
)
agent2 = Agent(
agent_name="Financial-Analysis-Agent_3",
system_prompt=FINANCIAL_AGENT_SYS_PROMPT,
llm=model,
max_loops=1,
dynamic_temperature_enabled=True,
saved_state_path="finance_agent_2.json",
user_name="swarms_corp",
retry_attempts=1,
context_length=200000,
return_step_meta=False,
)
# Initialize the MultiAgentCollaboration with the round-robin speaker function
multi_agent_framework = MultiAgentCollaboration(
agents=[agent1, agent2],
speaker_fn=round_robin_speaker,
max_loops=3,
use_cache=True, # Enable caching
autosave_on=True,
)
# Run the framework with an input prompt
task = "How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria"
out = multi_agent_framework.run(task)
print(out)
print(multi_agent_framework.return_output_schema_json())
self.shared_memory: Dict[str, Any] = {} # For inter-swarm communication
def add_swarm(self, swarm: BaseSwarm):
self.swarms.append(swarm)
def remove_swarm(self, swarm: BaseSwarm):
if swarm in self.swarms:
self.swarms.remove(swarm)
def get_swarm(self, name: str) -> Optional[BaseSwarm]:
for swarm in self.swarms:
if swarm.name == name:
return swarm
return None
def get_swarm_agents(self) -> List[Agent]:
agents = []
for swarm in self.swarms:
agents.extend(swarm.agents)
return agents
def get_swarm_agent(self, name: str) -> Optional[Agent]:
for agent in self.get_swarm_agents():
if agent.agent_name == name:
return agent
return None
async def run_single_swarm(
self, swarm: BaseSwarm, task: str, **kwargs
) -> Any:
return await swarm.run(task, **kwargs)
async def run_multiple_swarms_parallel(self, task: str, **kwargs) -> List[Any]:
async def run_swarm_with_shared_memory(swarm):
# Inject shared memory into the swarm's kwargs if the swarm needs it
swarm_kwargs = kwargs.copy()
if hasattr(swarm, "shared_memory"):
swarm.shared_memory = self.shared_memory
return await self.run_single_swarm(swarm, task, **swarm_kwargs)
tasks = [run_swarm_with_shared_memory(swarm) for swarm in self.swarms]
results = await asyncio.gather(*tasks)
return results
async def run_multiple_swarms_sequential(self, task:str, **kwargs) -> List[Any]:
results = []
for swarm in self.swarms:
swarm_kwargs = kwargs.copy()
if hasattr(swarm, "shared_memory"):
swarm.shared_memory = self.shared_memory
result = await self.run_single_swarm(swarm, task, **swarm_kwargs)
results.append(result)
# Optionally update the task based on previous swarm's output
# For sequential execution, you can chain outputs:
task = result # Or some function of the result
return results
async def run(self, task: str, parallel: bool = True, **kwargs):
if parallel:
results = await self.run_multiple_swarms_parallel(task, **kwargs)
else:
results = await self.run_multiple_swarms_sequential(task, **kwargs)
return results

Loading…
Cancel
Save