[DOCS UPDATE]

pull/704/head
Kye Gomez 2 weeks ago
parent b39dfe3e58
commit c3ba9e55bd

@ -62,25 +62,29 @@ The GroupChat system consists of several key components:
## Basic Usage
```python
import os
from dotenv import load_dotenv
from swarm_models import OpenAIChat
from swarms import Agent, GroupChat
from loguru import logger
from swarms import Agent, GroupChat, expertise_based
if __name__ == "__main__":
# Load environment variables
load_dotenv()
# Get the OpenAI API key from the environment variable
api_key = os.getenv("OPENAI_API_KEY")
# Initialize LLM
# Create an instance of the OpenAIChat class
model = OpenAIChat(
openai_api_key=api_key,
model_name="gpt-4o-mini",
temperature=0.1
temperature=0.1,
)
# Create financial analyst agent
financial_analyst = Agent(
# Example agents
agent1 = Agent(
agent_name="Financial-Analysis-Agent",
system_prompt="You are a financial analyst specializing in investment strategies.",
llm=model,
@ -89,36 +93,43 @@ financial_analyst = Agent(
dashboard=False,
verbose=True,
dynamic_temperature_enabled=True,
user_name="swarms_corp",
retry_attempts=1,
context_length=200000,
output_type="string"
output_type="string",
streaming_on=False,
)
# Create tax advisor agent
tax_advisor = Agent(
agent2 = Agent(
agent_name="Tax-Adviser-Agent",
system_prompt="You are a tax adviser providing clear tax guidance.",
system_prompt="You are a tax adviser who provides clear and concise guidance on tax-related queries.",
llm=model,
max_loops=1,
autosave=False,
dashboard=False,
verbose=True,
dynamic_temperature_enabled=True,
user_name="swarms_corp",
retry_attempts=1,
context_length=200000,
output_type="string"
output_type="string",
streaming_on=False,
)
# Initialize group chat
agents = [agent1, agent2]
chat = GroupChat(
name="Investment Advisory",
description="Financial and tax analysis group",
agents=[financial_analyst, tax_advisor],
speaker_fn=expertise_based
agents=agents,
speaker_fn=expertise_based,
)
history = chat.run(
"How to optimize tax strategy for investments?"
)
print(history.model_dump_json(indent=2))
# Run conversation
history = chat.run("How to optimize tax strategy for investments?")
```
## Speaker Functions

@ -1,8 +1,10 @@
from swarms.structs.swarm_arange import SwarmRearrange
import os
from swarms import Agent, AgentRearrange
from swarm_models import OpenAIChat
from swarms import Agent, AgentRearrange
from swarms.structs.swarm_arange import SwarmRearrange
# model = Anthropic(anthropic_api_key=os.getenv("ANTHROPIC_API_KEY"))
company = "TGSC"

Loading…
Cancel
Save