clean up docs

Former-commit-id: f95d52f6c0
discord-bot-framework
Kye 1 year ago
parent 3a20b51f4c
commit c3ccc69725

@ -50,11 +50,12 @@ Lets embark on an exciting journey with OmniModalAgent:
**i. Basic Interaction**: **i. Basic Interaction**:
```python ```python
from swarms import OmniModalAgent, OpenAIChat from swarms.agents import OmniModalAgent
from swarms.models import OpenAIChat
llm = OpenAIChat() llm = OpenAIChat(openai_api_key="sk-")
agent = OmniModalAgent(llm) agent = OmniModalAgent(llm)
response = agent.run("Hello, how are you? Create an image of how you are doing!") response = agent.run("Create an video of a swarm of fish concept art, game art")
print(response) print(response)
``` ```

@ -0,0 +1,119 @@
from abc import ABC, abstractmethod
from concurrent import futures
from dataclasses import dataclass
from typing import Optional, Any
from attr import define, field, Factory
from swarms.utils.futures import execute_futures_dict
from griptape.artifacts import TextArtifact
@define
class BaseVectorStore(ABC):
"""
"""
DEFAULT_QUERY_COUNT = 5
@dataclass
class QueryResult:
id: str
vector: list[float]
score: float
meta: Optional[dict] = None
namespace: Optional[str] = None
@dataclass
class Entry:
id: str
vector: list[float]
meta: Optional[dict] = None
namespace: Optional[str] = None
embedding_driver: Any
futures_executor: futures.Executor = field(
default=Factory(lambda: futures.ThreadPoolExecutor()),
kw_only=True
)
def upsert_text_artifacts(
self,
artifacts: dict[str, list[TextArtifact]],
meta: Optional[dict] = None,
**kwargs
) -> None:
execute_futures_dict({
namespace:
self.futures_executor.submit(self.upsert_text_artifact, a, namespace, meta, **kwargs)
for namespace, artifact_list in artifacts.items() for a in artifact_list
})
def upsert_text_artifact(
self,
artifact: TextArtifact,
namespace: Optional[str] = None,
meta: Optional[dict] = None,
**kwargs
) -> str:
if not meta:
meta = {}
meta["artifact"] = artifact.to_json()
if artifact.embedding:
vector = artifact.embedding
else:
vector = artifact.generate_embedding(self.embedding_driver)
return self.upsert_vector(
vector,
vector_id=artifact.id,
namespace=namespace,
meta=meta,
**kwargs
)
def upsert_text(
self,
string: str,
vector_id: Optional[str] = None,
namespace: Optional[str] = None,
meta: Optional[dict] = None,
**kwargs
) -> str:
return self.upsert_vector(
self.embedding_driver.embed_string(string),
vector_id=vector_id,
namespace=namespace,
meta=meta if meta else {},
**kwargs
)
@abstractmethod
def upsert_vector(
self,
vector: list[float],
vector_id: Optional[str] = None,
namespace: Optional[str] = None,
meta: Optional[dict] = None,
**kwargs
) -> str:
...
@abstractmethod
def load_entry(self, vector_id: str, namespace: Optional[str] = None) -> Entry:
...
@abstractmethod
def load_entries(self, namespace: Optional[str] = None) -> list[Entry]:
...
@abstractmethod
def query(
self,
query: str,
count: Optional[int] = None,
namespace: Optional[str] = None,
include_vectors: bool = False,
**kwargs
) -> list[QueryResult]:
...

@ -0,0 +1,192 @@
import uuid
from typing import Optional
from attr import define, field, Factory
from dataclasses import dataclass
from swarms.memory.vector_stores.base import BaseVectorStoreDriver
from sqlalchemy.engine import Engine
from sqlalchemy import create_engine, Column, String, JSON
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.dialects.postgresql import UUID
from sqlalchemy.orm import Session
from pgvector.sqlalchemy import Vector
@define
class PgVectorVectorStoreDriver(BaseVectorStoreDriver):
"""A vector store driver to Postgres using the PGVector extension.
Attributes:
connection_string: An optional string describing the target Postgres database instance.
create_engine_params: Additional configuration params passed when creating the database connection.
engine: An optional sqlalchemy Postgres engine to use.
table_name: Optionally specify the name of the table to used to store vectors.
"""
connection_string: Optional[str] = field(default=None, kw_only=True)
create_engine_params: dict = field(factory=dict, kw_only=True)
engine: Optional[Engine] = field(default=None, kw_only=True)
table_name: str = field(kw_only=True)
_model: any = field(default=Factory(lambda self: self.default_vector_model(), takes_self=True))
@connection_string.validator
def validate_connection_string(self, _, connection_string: Optional[str]) -> None:
# If an engine is provided, the connection string is not used.
if self.engine is not None:
return
# If an engine is not provided, a connection string is required.
if connection_string is None:
raise ValueError("An engine or connection string is required")
if not connection_string.startswith("postgresql://"):
raise ValueError("The connection string must describe a Postgres database connection")
@engine.validator
def validate_engine(self, _, engine: Optional[Engine]) -> None:
# If a connection string is provided, an engine does not need to be provided.
if self.connection_string is not None:
return
# If a connection string is not provided, an engine is required.
if engine is None:
raise ValueError("An engine or connection string is required")
def __attrs_post_init__(self) -> None:
"""If a an engine is provided, it will be used to connect to the database.
If not, a connection string is used to create a new database connection here.
"""
if self.engine is None:
self.engine = create_engine(self.connection_string, **self.create_engine_params)
def setup(
self,
create_schema: bool = True,
install_uuid_extension: bool = True,
install_vector_extension: bool = True,
) -> None:
"""Provides a mechanism to initialize the database schema and extensions."""
if install_uuid_extension:
self.engine.execute('CREATE EXTENSION IF NOT EXISTS "uuid-ossp";')
if install_vector_extension:
self.engine.execute('CREATE EXTENSION IF NOT EXISTS "vector";')
if create_schema:
self._model.metadata.create_all(self.engine)
def upsert_vector(
self,
vector: list[float],
vector_id: Optional[str] = None,
namespace: Optional[str] = None,
meta: Optional[dict] = None,
**kwargs
) -> str:
"""Inserts or updates a vector in the collection."""
with Session(self.engine) as session:
obj = self._model(
id=vector_id,
vector=vector,
namespace=namespace,
meta=meta,
)
obj = session.merge(obj)
session.commit()
return str(obj.id)
def load_entry(self, vector_id: str, namespace: Optional[str] = None) -> BaseVectorStoreDriver.Entry:
"""Retrieves a specific vector entry from the collection based on its identifier and optional namespace."""
with Session(self.engine) as session:
result = session.get(self._model, vector_id)
return BaseVectorStoreDriver.Entry(
id=result.id,
vector=result.vector,
namespace=result.namespace,
meta=result.meta,
)
def load_entries(self, namespace: Optional[str] = None) -> list[BaseVectorStoreDriver.Entry]:
"""Retrieves all vector entries from the collection, optionally filtering to only
those that match the provided namespace.
"""
with Session(self.engine) as session:
query = session.query(self._model)
if namespace:
query = query.filter_by(namespace=namespace)
results = query.all()
return [
BaseVectorStoreDriver.Entry(
id=str(result.id),
vector=result.vector,
namespace=result.namespace,
meta=result.meta,
)
for result in results
]
def query(
self,
query: str,
count: Optional[int] = BaseVectorStoreDriver.DEFAULT_QUERY_COUNT,
namespace: Optional[str] = None,
include_vectors: bool = False,
distance_metric: str = "cosine_distance",
**kwargs
) -> list[BaseVectorStoreDriver.QueryResult]:
"""Performs a search on the collection to find vectors similar to the provided input vector,
optionally filtering to only those that match the provided namespace.
"""
distance_metrics = {
"cosine_distance": self._model.vector.cosine_distance,
"l2_distance": self._model.vector.l2_distance,
"inner_product": self._model.vector.max_inner_product,
}
if distance_metric not in distance_metrics:
raise ValueError("Invalid distance metric provided")
op = distance_metrics[distance_metric]
with Session(self.engine) as session:
vector = self.embedding_driver.embed_string(query)
# The query should return both the vector and the distance metric score.
query = session.query(
self._model,
op(vector).label("score"),
).order_by(op(vector))
if namespace:
query = query.filter_by(namespace=namespace)
results = query.limit(count).all()
return [
BaseVectorStoreDriver.QueryResult(
id=str(result[0].id),
vector=result[0].vector if include_vectors else None,
score=result[1],
meta=result[0].meta,
namespace=result[0].namespace,
)
for result in results
]
def default_vector_model(self) -> any:
Base = declarative_base()
@dataclass
class VectorModel(Base):
__tablename__ = self.table_name
id = Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4, unique=True, nullable=False)
vector = Column(Vector())
namespace = Column(String)
meta = Column(JSON)
return VectorModel

@ -0,0 +1,10 @@
from concurrent import futures
from typing import TypeVar
T = TypeVar("T")
def execute_futures_dict(fs_dict: dict[str, futures.Future[T]]) -> dict[str, T]:
futures.wait(fs_dict.values(), timeout=None, return_when=futures.ALL_COMPLETED)
return {key: future.result() for key, future in fs_dict.items()}
Loading…
Cancel
Save