parent
a2ccaab260
commit
c7d32ac6e8
@ -1,172 +0,0 @@
|
||||
# Fix for Issue #936: Agent Tool Usage with Streaming Enabled
|
||||
|
||||
## Problem Summary
|
||||
- Agent tool usage callable doesn't work with streaming enabled
|
||||
- Works without streaming well
|
||||
- Tool execution logging disappeared
|
||||
|
||||
## Root Cause Analysis
|
||||
When streaming is enabled, the LLM response chunks are collected as plain text strings, losing the structured API response format that contains tool call metadata. The `tool_struct.execute_function_calls_from_api_response()` method expects structured responses with `tool_calls` attributes, but streaming responses only contained concatenated text content.
|
||||
|
||||
## Solution Implementation
|
||||
|
||||
### 1. Created StreamingToolResponse Class
|
||||
**File**: `swarms/structs/agent.py` (lines 91-104)
|
||||
|
||||
```python
|
||||
class StreamingToolResponse:
|
||||
"""
|
||||
Response wrapper that preserves both content and tool calls from streaming responses.
|
||||
This enables tool execution when streaming is enabled.
|
||||
"""
|
||||
def __init__(self, content: str, tool_calls: List[Any] = None):
|
||||
self.content = content
|
||||
self.tool_calls = tool_calls or []
|
||||
|
||||
def __str__(self):
|
||||
return self.content
|
||||
|
||||
def __repr__(self):
|
||||
return f"StreamingToolResponse(content='{self.content[:50]}...', tool_calls={len(self.tool_calls)} calls)"
|
||||
```
|
||||
|
||||
**Purpose**: Replace dynamic type creation with a proper class that preserves both content and tool calls from streaming responses.
|
||||
|
||||
### 2. Enhanced Streaming Chunk Processing
|
||||
**File**: `swarms/structs/agent.py` (lines 2600-2690)
|
||||
|
||||
**Modified all three streaming paths in `call_llm` method**:
|
||||
|
||||
#### A. Streaming with Callback (lines 2615-2625)
|
||||
```python
|
||||
# Preserve tool calls from streaming chunks
|
||||
try:
|
||||
if (hasattr(chunk, "choices") and
|
||||
len(chunk.choices) > 0 and
|
||||
hasattr(chunk.choices[0], "delta") and
|
||||
hasattr(chunk.choices[0].delta, "tool_calls") and
|
||||
chunk.choices[0].delta.tool_calls):
|
||||
tool_calls.extend(chunk.choices[0].delta.tool_calls)
|
||||
except (AttributeError, IndexError) as e:
|
||||
logger.debug(f"Could not extract tool calls from chunk: {e}")
|
||||
```
|
||||
|
||||
#### B. Silent Streaming (lines 2636-2646)
|
||||
- Same tool call preservation logic as above
|
||||
- Maintains streaming behavior while capturing tool calls
|
||||
|
||||
#### C. Streaming Panel (lines 2658-2688)
|
||||
```python
|
||||
# Create a tool-aware streaming processor to preserve tool calls
|
||||
def tool_aware_streaming(stream_response):
|
||||
for chunk in stream_response:
|
||||
# Preserve tool calls from streaming chunks with error handling
|
||||
try:
|
||||
if (hasattr(chunk, "choices") and
|
||||
len(chunk.choices) > 0 and
|
||||
hasattr(chunk.choices[0], "delta") and
|
||||
hasattr(chunk.choices[0].delta, "tool_calls") and
|
||||
chunk.choices[0].delta.tool_calls):
|
||||
tool_calls.extend(chunk.choices[0].delta.tool_calls)
|
||||
except (AttributeError, IndexError) as e:
|
||||
logger.debug(f"Could not extract tool calls from chunk: {e}")
|
||||
yield chunk
|
||||
```
|
||||
|
||||
**Purpose**: Prevents iterator consumption bug while preserving tool calls.
|
||||
|
||||
### 3. Enhanced Tool Execution Logging
|
||||
**File**: `swarms/structs/agent.py` (lines 3109-3133)
|
||||
|
||||
```python
|
||||
# Add tool execution logging
|
||||
logger.info(f"Starting tool execution for agent '{self.agent_name}' in loop {loop_count}")
|
||||
|
||||
# Enhanced retry logic with logging
|
||||
try:
|
||||
output = self.tool_struct.execute_function_calls_from_api_response(response)
|
||||
except Exception as e:
|
||||
logger.warning(f"First attempt at tool execution failed: {e}. Retrying...")
|
||||
try:
|
||||
output = self.tool_struct.execute_function_calls_from_api_response(response)
|
||||
except Exception as retry_error:
|
||||
logger.error(f"Tool execution failed after retry: {retry_error}")
|
||||
if output is None:
|
||||
raise retry_error
|
||||
|
||||
# Log successful tool execution
|
||||
if output is not None:
|
||||
logger.info(f"Tool execution successful for agent '{self.agent_name}' in loop {loop_count}. Output length: {len(str(output)) if output else 0}")
|
||||
else:
|
||||
logger.warning(f"Tool execution completed but returned None output for agent '{self.agent_name}' in loop {loop_count}")
|
||||
```
|
||||
|
||||
**Purpose**: Restore missing tool execution logging with comprehensive status reporting.
|
||||
|
||||
## Key Improvements
|
||||
|
||||
### 1. **Robust Error Handling**
|
||||
- Added try-catch blocks around tool call extraction
|
||||
- Graceful handling of malformed chunks
|
||||
- Protection against `AttributeError` and `IndexError`
|
||||
|
||||
### 2. **Iterator Safety**
|
||||
- Fixed streaming iterator consumption bug
|
||||
- Proper generator pattern to avoid iterator exhaustion
|
||||
|
||||
### 3. **Comprehensive Logging**
|
||||
- Tool execution start/success/failure logging
|
||||
- Retry attempt logging
|
||||
- Debug-level logging for chunk processing errors
|
||||
|
||||
### 4. **Backward Compatibility**
|
||||
- No changes to existing non-streaming behavior
|
||||
- Maintains all existing API contracts
|
||||
- Falls back gracefully when no tool calls present
|
||||
|
||||
## Testing
|
||||
|
||||
Created two test files:
|
||||
|
||||
### 1. `test_streaming_tools.py`
|
||||
- Tests streaming behavior with and without tools
|
||||
- Validates tool execution occurs with streaming enabled
|
||||
- Checks memory history for tool execution evidence
|
||||
|
||||
### 2. `test_original_issue.py`
|
||||
- Reproduces exact code from GitHub issue #936
|
||||
- Uses original function signatures and agent configuration
|
||||
- Validates the specific use case reported in the issue
|
||||
|
||||
## Files Modified
|
||||
|
||||
1. **`swarms/structs/agent.py`**
|
||||
- Added `StreamingToolResponse` class
|
||||
- Enhanced streaming chunk processing in `call_llm` method
|
||||
- Improved tool execution logging in `execute_tools` method
|
||||
|
||||
2. **Created Test Files**
|
||||
- `test_streaming_tools.py` - Comprehensive streaming + tool tests
|
||||
- `test_original_issue.py` - Reproduction of original issue scenario
|
||||
|
||||
## Verification
|
||||
|
||||
The solution addresses both reported issues:
|
||||
|
||||
✅ **Tool Usage with Streaming**: Tool calls are now preserved and executed when streaming is enabled
|
||||
|
||||
✅ **Tool Execution Logging**: Comprehensive logging is now present throughout the tool execution process
|
||||
|
||||
## Edge Cases Handled
|
||||
|
||||
1. **Malformed Chunks**: Graceful error handling prevents crashes
|
||||
2. **Empty Tool Calls**: Proper validation before processing
|
||||
3. **Iterator Consumption**: Safe streaming processing without iterator exhaustion
|
||||
4. **Mixed Content**: Handles chunks with both content and tool calls
|
||||
5. **Multiple Tool Calls**: Supports multiple tool calls in single or multiple chunks
|
||||
|
||||
## Performance Impact
|
||||
|
||||
- **Minimal**: Only additional memory for tool call arrays during streaming
|
||||
- **Efficient**: Tool call extraction only occurs when chunks contain them
|
||||
- **Scalable**: Handles multiple concurrent streaming agents safely
|
@ -1,173 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Reproduce the exact code from GitHub issue #936 to test the fix.
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
import http.client
|
||||
import json
|
||||
from swarms import Agent
|
||||
import os
|
||||
|
||||
|
||||
def get_realtor_data_from_one_source(location: str):
|
||||
"""
|
||||
Fetch rental property data from the Realtor API for a specified location.
|
||||
|
||||
Args:
|
||||
location (str): The location to search for rental properties (e.g., "Menlo Park, CA")
|
||||
|
||||
Returns:
|
||||
str: JSON-formatted string containing rental property data
|
||||
|
||||
Raises:
|
||||
http.client.HTTPException: If the API request fails
|
||||
json.JSONDecodeError: If the response cannot be parsed as JSON
|
||||
"""
|
||||
# Mock implementation since we don't have API key
|
||||
return json.dumps({
|
||||
"properties": [
|
||||
{
|
||||
"name": f"Sample Property in {location}",
|
||||
"address": f"123 Main St, {location}",
|
||||
"price": 2800,
|
||||
"bedrooms": 2,
|
||||
"bathrooms": 1
|
||||
}
|
||||
]
|
||||
}, indent=2)
|
||||
|
||||
|
||||
def get_realtor_data_from_multiple_sources(locations: List[str]):
|
||||
"""
|
||||
Fetch rental property data from multiple sources for a specified location.
|
||||
|
||||
Args:
|
||||
location (List[str]): List of locations to search for rental properties (e.g., ["Menlo Park, CA", "Palo Alto, CA"])
|
||||
"""
|
||||
output = []
|
||||
for location in locations:
|
||||
data = get_realtor_data_from_one_source(location)
|
||||
output.append(data)
|
||||
return output
|
||||
|
||||
|
||||
def test_original_issue():
|
||||
"""Test the exact scenario from the GitHub issue"""
|
||||
print("🧪 Testing Original Issue #936 Code...")
|
||||
|
||||
agent = Agent(
|
||||
agent_name="Rental-Property-Specialist",
|
||||
system_prompt="""
|
||||
You are an expert rental property specialist with deep expertise in real estate analysis and tenant matching. Your core responsibilities include:
|
||||
1. Property Analysis & Evaluation
|
||||
- Analyze rental property features and amenities
|
||||
- Evaluate location benefits and drawbacks
|
||||
- Assess property condition and maintenance needs
|
||||
- Compare rental rates with market standards
|
||||
- Review lease terms and conditions
|
||||
- Identify potential red flags or issues
|
||||
|
||||
2. Location Assessment
|
||||
- Analyze neighborhood safety and demographics
|
||||
- Evaluate proximity to amenities (schools, shopping, transit)
|
||||
- Research local market trends and development plans
|
||||
- Consider noise levels and traffic patterns
|
||||
- Assess parking availability and restrictions
|
||||
- Review zoning regulations and restrictions
|
||||
|
||||
3. Financial Analysis
|
||||
- Calculate price-to-rent ratios
|
||||
- Analyze utility costs and included services
|
||||
- Evaluate security deposit requirements
|
||||
- Consider additional fees (pet rent, parking, etc.)
|
||||
- Compare with similar properties in the area
|
||||
- Assess potential for rent increases
|
||||
|
||||
4. Tenant Matching
|
||||
- Match properties to tenant requirements
|
||||
- Consider commute distances
|
||||
- Evaluate pet policies and restrictions
|
||||
- Assess lease term flexibility
|
||||
- Review application requirements
|
||||
- Consider special accommodations needed
|
||||
|
||||
5. Documentation & Compliance
|
||||
- Review lease agreement terms
|
||||
- Verify property certifications
|
||||
- Check compliance with local regulations
|
||||
- Assess insurance requirements
|
||||
- Review maintenance responsibilities
|
||||
- Document property condition
|
||||
|
||||
When analyzing properties, always consider:
|
||||
- Value for money
|
||||
- Location quality
|
||||
- Property condition
|
||||
- Lease terms fairness
|
||||
- Safety and security
|
||||
- Maintenance and management quality
|
||||
- Future market potential
|
||||
- Tenant satisfaction factors
|
||||
|
||||
Provide clear, objective analysis while maintaining professional standards and ethical considerations.""",
|
||||
model_name="claude-3-sonnet-20240229",
|
||||
max_loops=2,
|
||||
verbose=True,
|
||||
streaming_on=True, # THIS WAS CAUSING THE ISSUE
|
||||
print_on=True,
|
||||
tools=[get_realtor_data_from_multiple_sources],
|
||||
api_key=os.getenv("ANTHROPIC_API_KEY"), # Use appropriate API key
|
||||
)
|
||||
|
||||
task = "What are the best properties in Menlo park and palo alto for rent under 3,000$"
|
||||
|
||||
try:
|
||||
print(f"📝 Running task: {task}")
|
||||
print("🔄 With streaming=True and tools enabled...")
|
||||
|
||||
result = agent.run(task)
|
||||
|
||||
print(f"\n✅ Result: {result}")
|
||||
|
||||
# Check if tool was executed
|
||||
memory_history = agent.short_memory.return_history_as_string()
|
||||
|
||||
if "Tool Executor" in memory_history:
|
||||
print("\n✅ SUCCESS: Tool was executed successfully with streaming enabled!")
|
||||
print("🎉 Issue #936 appears to be FIXED!")
|
||||
return True
|
||||
else:
|
||||
print("\n❌ FAILURE: Tool execution was not detected")
|
||||
print("🚨 Issue #936 is NOT fixed yet")
|
||||
print("\nMemory History:")
|
||||
print(memory_history)
|
||||
return False
|
||||
|
||||
except Exception as e:
|
||||
print(f"\n❌ FAILURE: Exception occurred: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
return False
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print("🔧 Testing the Exact Code from GitHub Issue #936")
|
||||
print("=" * 60)
|
||||
|
||||
# Check if API key is available
|
||||
if not os.getenv("ANTHROPIC_API_KEY") and not os.getenv("OPENAI_API_KEY"):
|
||||
print("⚠️ Warning: Neither ANTHROPIC_API_KEY nor OPENAI_API_KEY are set.")
|
||||
print("Setting a dummy key for testing purposes...")
|
||||
os.environ["ANTHROPIC_API_KEY"] = "dummy-key-for-testing"
|
||||
|
||||
success = test_original_issue()
|
||||
|
||||
print("\n" + "=" * 60)
|
||||
if success:
|
||||
print("🎉 SUCCESS: The original issue appears to be RESOLVED!")
|
||||
print("✅ Agent tool usage now works with streaming enabled")
|
||||
print("✅ Tool execution logging is now present")
|
||||
else:
|
||||
print("❌ FAILURE: The original issue is NOT fully resolved yet")
|
||||
print("🔧 Additional fixes may be needed")
|
@ -1,164 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Test script to reproduce and verify the fix for issue #936:
|
||||
Agent tool usage fails when streaming is enabled.
|
||||
"""
|
||||
|
||||
from typing import List
|
||||
import json
|
||||
from swarms import Agent
|
||||
import os
|
||||
import logging
|
||||
|
||||
# Set up logging to see the tool execution logs
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def simple_calculator_tool(operation: str, num1: float, num2: float) -> str:
|
||||
"""
|
||||
Simple calculator tool for testing.
|
||||
|
||||
Args:
|
||||
operation: The operation to perform (add, subtract, multiply, divide)
|
||||
num1: First number
|
||||
num2: Second number
|
||||
|
||||
Returns:
|
||||
str: Result of the calculation
|
||||
"""
|
||||
logger.info(f"Calculator tool called: {operation}({num1}, {num2})")
|
||||
|
||||
if operation == "add":
|
||||
result = num1 + num2
|
||||
elif operation == "subtract":
|
||||
result = num1 - num2
|
||||
elif operation == "multiply":
|
||||
result = num1 * num2
|
||||
elif operation == "divide":
|
||||
if num2 == 0:
|
||||
return "Error: Division by zero"
|
||||
result = num1 / num2
|
||||
else:
|
||||
return f"Error: Unknown operation {operation}"
|
||||
|
||||
return f"The result of {operation}({num1}, {num2}) is {result}"
|
||||
|
||||
|
||||
def test_agent_streaming_with_tools():
|
||||
"""Test that agent can use tools when streaming is enabled"""
|
||||
|
||||
print("🧪 Testing Agent with Streaming + Tools...")
|
||||
|
||||
# Create agent with streaming enabled
|
||||
agent = Agent(
|
||||
agent_name="Calculator-Agent",
|
||||
system_prompt="""
|
||||
You are a helpful calculator assistant. When asked to perform calculations,
|
||||
use the simple_calculator_tool to compute the result.
|
||||
|
||||
Available tool:
|
||||
- simple_calculator_tool(operation, num1, num2): Performs basic calculations
|
||||
|
||||
Always use the tool for calculations instead of doing them yourself.
|
||||
""",
|
||||
model_name="gpt-3.5-turbo", # Using a common model for testing
|
||||
max_loops=2, # Allow for tool execution + response
|
||||
verbose=True,
|
||||
streaming_on=True, # THIS IS THE KEY - streaming enabled
|
||||
print_on=True,
|
||||
tools=[simple_calculator_tool],
|
||||
# Add any necessary API keys from environment
|
||||
api_key=os.getenv("OPENAI_API_KEY"),
|
||||
)
|
||||
|
||||
# Test task that should trigger tool usage
|
||||
task = "Please calculate 25 + 17 for me using the calculator tool"
|
||||
|
||||
print(f"\n📝 Task: {task}")
|
||||
print("\n🔄 Running agent with streaming + tools...")
|
||||
|
||||
try:
|
||||
result = agent.run(task)
|
||||
print(f"\n✅ Result: {result}")
|
||||
|
||||
# Check if the tool was actually executed by looking at memory
|
||||
memory_history = agent.short_memory.return_history_as_string()
|
||||
|
||||
if "Tool Executor" in memory_history:
|
||||
print("✅ SUCCESS: Tool execution found in memory history!")
|
||||
return True
|
||||
else:
|
||||
print("❌ FAILURE: No tool execution found in memory history")
|
||||
print("Memory history:")
|
||||
print(memory_history)
|
||||
return False
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ FAILURE: Exception occurred: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
return False
|
||||
|
||||
|
||||
def test_agent_streaming_without_tools():
|
||||
"""Test that agent works normally when streaming is enabled but no tools needed"""
|
||||
|
||||
print("\n🧪 Testing Agent with Streaming (No Tools)...")
|
||||
|
||||
agent = Agent(
|
||||
agent_name="Simple-Agent",
|
||||
system_prompt="You are a helpful assistant.",
|
||||
model_name="gpt-3.5-turbo",
|
||||
max_loops=1,
|
||||
verbose=True,
|
||||
streaming_on=True, # Streaming enabled
|
||||
print_on=True,
|
||||
api_key=os.getenv("OPENAI_API_KEY"),
|
||||
)
|
||||
|
||||
task = "What is the capital of France?"
|
||||
|
||||
print(f"\n📝 Task: {task}")
|
||||
print("\n🔄 Running agent with streaming (no tools)...")
|
||||
|
||||
try:
|
||||
result = agent.run(task)
|
||||
print(f"\n✅ Result: {result}")
|
||||
|
||||
if "Paris" in str(result):
|
||||
print("✅ SUCCESS: Agent responded correctly without tools")
|
||||
return True
|
||||
else:
|
||||
print("❌ FAILURE: Agent didn't provide expected response")
|
||||
return False
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ FAILURE: Exception occurred: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
return False
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print("🔧 Testing Fix for Issue #936: Agent Tool Usage with Streaming")
|
||||
print("=" * 60)
|
||||
|
||||
# Check if API key is available
|
||||
if not os.getenv("OPENAI_API_KEY"):
|
||||
print("⚠️ Warning: OPENAI_API_KEY not set. Tests may fail.")
|
||||
print("Please set OPENAI_API_KEY environment variable to run tests.")
|
||||
|
||||
# Run tests
|
||||
test1_passed = test_agent_streaming_without_tools()
|
||||
test2_passed = test_agent_streaming_with_tools()
|
||||
|
||||
print("\n" + "=" * 60)
|
||||
print("📊 Test Results:")
|
||||
print(f" Test 1 (Streaming without tools): {'✅ PASSED' if test1_passed else '❌ FAILED'}")
|
||||
print(f" Test 2 (Streaming with tools): {'✅ PASSED' if test2_passed else '❌ FAILED'}")
|
||||
|
||||
if test1_passed and test2_passed:
|
||||
print("\n🎉 ALL TESTS PASSED! The fix appears to be working correctly.")
|
||||
else:
|
||||
print("\n⚠️ SOME TESTS FAILED! The fix may need additional work.")
|
Loading…
Reference in new issue