parent
afc8df570a
commit
c82f4f9b5a
@ -0,0 +1,530 @@
|
|||||||
|
import base64
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
from io import BytesIO
|
||||||
|
from typing import List, Literal, Optional, Tuple, Union
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from PIL import Image
|
||||||
|
from pydantic import BaseModel, Field
|
||||||
|
from transformers import (
|
||||||
|
AutoModelForCausalLM,
|
||||||
|
LlamaTokenizer,
|
||||||
|
TextIteratorStreamer,
|
||||||
|
)
|
||||||
|
|
||||||
|
from swarms.models.base_multimodal_model import BaseMultiModalModel
|
||||||
|
from swarms.utils.logger import logger
|
||||||
|
|
||||||
|
MODEL_PATH = "THUDM/cogvlm-chat-hf"
|
||||||
|
TOKENIZER_PATH = "lmsys/vicuna-7b-v1.5"
|
||||||
|
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
||||||
|
QUANT_ENABLED = False
|
||||||
|
|
||||||
|
|
||||||
|
class ImageUrl(BaseModel):
|
||||||
|
url: str
|
||||||
|
|
||||||
|
|
||||||
|
class TextContent(BaseModel):
|
||||||
|
type: Literal["text"]
|
||||||
|
text: str
|
||||||
|
|
||||||
|
|
||||||
|
class ImageUrlContent(BaseModel):
|
||||||
|
type: Literal["image_url"]
|
||||||
|
image_url: ImageUrl
|
||||||
|
|
||||||
|
|
||||||
|
ContentItem = Union[TextContent, ImageUrlContent]
|
||||||
|
|
||||||
|
|
||||||
|
class ChatMessageInput(BaseModel):
|
||||||
|
role: Literal["user", "assistant", "system"]
|
||||||
|
content: Union[str, List[ContentItem]]
|
||||||
|
name: Optional[str] = None
|
||||||
|
|
||||||
|
|
||||||
|
class ChatMessageResponse(BaseModel):
|
||||||
|
role: Literal["assistant"]
|
||||||
|
content: str = None
|
||||||
|
name: Optional[str] = None
|
||||||
|
|
||||||
|
|
||||||
|
class DeltaMessage(BaseModel):
|
||||||
|
role: Optional[Literal["user", "assistant", "system"]] = None
|
||||||
|
content: Optional[str] = None
|
||||||
|
|
||||||
|
|
||||||
|
class ChatCompletionRequest(BaseModel):
|
||||||
|
model: str
|
||||||
|
messages: List[ChatMessageInput]
|
||||||
|
temperature: Optional[float] = 0.8
|
||||||
|
top_p: Optional[float] = 0.8
|
||||||
|
max_tokens: Optional[int] = None
|
||||||
|
stream: Optional[bool] = False
|
||||||
|
# Additional parameters
|
||||||
|
repetition_penalty: Optional[float] = 1.0
|
||||||
|
|
||||||
|
|
||||||
|
class ChatCompletionResponseChoice(BaseModel):
|
||||||
|
index: int
|
||||||
|
message: ChatMessageResponse
|
||||||
|
|
||||||
|
|
||||||
|
class ChatCompletionResponseStreamChoice(BaseModel):
|
||||||
|
index: int
|
||||||
|
delta: DeltaMessage
|
||||||
|
|
||||||
|
|
||||||
|
class UsageInfo(BaseModel):
|
||||||
|
prompt_tokens: int = 0
|
||||||
|
total_tokens: int = 0
|
||||||
|
completion_tokens: Optional[int] = 0
|
||||||
|
|
||||||
|
|
||||||
|
class ChatCompletionResponse(BaseModel):
|
||||||
|
model: str
|
||||||
|
object: Literal["chat.completion", "chat.completion.chunk"]
|
||||||
|
choices: List[
|
||||||
|
Union[
|
||||||
|
ChatCompletionResponseChoice,
|
||||||
|
ChatCompletionResponseStreamChoice,
|
||||||
|
]
|
||||||
|
]
|
||||||
|
created: Optional[int] = Field(
|
||||||
|
default_factory=lambda: int(time.time())
|
||||||
|
)
|
||||||
|
usage: Optional[UsageInfo] = None
|
||||||
|
|
||||||
|
|
||||||
|
# async def create_chat_completion(request: ChatCompletionRequest):
|
||||||
|
# global model, tokenizer
|
||||||
|
|
||||||
|
# gen_params = dict(
|
||||||
|
# messages=request.messages,
|
||||||
|
# temperature=request.temperature,
|
||||||
|
# top_p=request.top_p,
|
||||||
|
# max_tokens=request.max_tokens or 1024,
|
||||||
|
# echo=False,
|
||||||
|
# stream=request.stream,
|
||||||
|
# )
|
||||||
|
|
||||||
|
# # if request.stream:
|
||||||
|
# # predict(request.model, gen_params)
|
||||||
|
# # response = generate_cogvlm(model, tokenizer, gen_params)
|
||||||
|
|
||||||
|
# usage = UsageInfo()
|
||||||
|
|
||||||
|
# message = ChatMessageResponse(
|
||||||
|
# role="assistant",
|
||||||
|
# content=response["text"],
|
||||||
|
# )
|
||||||
|
# logger.debug(f"==== message ====\n{message}")
|
||||||
|
# choice_data = ChatCompletionResponseChoice(
|
||||||
|
# index=0,
|
||||||
|
# message=message,
|
||||||
|
# )
|
||||||
|
# task_usage = UsageInfo.model_validate(response["usage"])
|
||||||
|
# for usage_key, usage_value in task_usage.model_dump().items():
|
||||||
|
# setattr(
|
||||||
|
# usage, usage_key, getattr(usage, usage_key) + usage_value
|
||||||
|
# )
|
||||||
|
# return ChatCompletionResponse(
|
||||||
|
# model=request.model,
|
||||||
|
# choices=[choice_data],
|
||||||
|
# object="chat.completion",
|
||||||
|
# usage=usage,
|
||||||
|
# )
|
||||||
|
|
||||||
|
|
||||||
|
class CogVLMMultiModal(BaseMultiModalModel):
|
||||||
|
"""
|
||||||
|
Initializes the CogVLM model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model_name (str): The path or name of the pre-trained model.
|
||||||
|
tokenizer (str): The path or name of the tokenizer.
|
||||||
|
device (str): The device to run the model on.
|
||||||
|
quantize (bool): Whether to enable quantization.
|
||||||
|
torch_type (str): The torch data type to use.
|
||||||
|
temperature (float): The temperature for sampling.
|
||||||
|
top_p (float): The top-p value for sampling.
|
||||||
|
max_tokens (int): The maximum number of tokens to generate.
|
||||||
|
echo (bool): Whether to echo the input text.
|
||||||
|
stream (bool): Whether to stream the output.
|
||||||
|
repetition_penalty (float): The repetition penalty for sampling.
|
||||||
|
do_sample (bool): Whether to use sampling during generation.
|
||||||
|
*args: Additional positional arguments.
|
||||||
|
**kwargs: Additional keyword arguments.
|
||||||
|
|
||||||
|
Methods:
|
||||||
|
run: Generates a response using the CogVLM model.
|
||||||
|
generate_stream_cogvlm: Generates a stream of responses using the CogVLM model in inference mode.
|
||||||
|
process_history_and_images: Processes history messages to extract text, identify the last user query, and convert base64 encoded image URLs to PIL images.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
>>> model = CogVLMMultiModal()
|
||||||
|
>>> response = model("Describe this image with meticlous details.", "https://example.com/image.jpg")
|
||||||
|
>>> print(response)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model_name: str = MODEL_PATH,
|
||||||
|
tokenizer: str = TOKENIZER_PATH,
|
||||||
|
device: str = DEVICE,
|
||||||
|
quantize: bool = QUANT_ENABLED,
|
||||||
|
torch_type: str = "float16",
|
||||||
|
temperature: float = 0.5,
|
||||||
|
top_p: float = 0.9,
|
||||||
|
max_tokens: int = 3500,
|
||||||
|
echo: bool = False,
|
||||||
|
stream: bool = False,
|
||||||
|
repetition_penalty: float = 1.0,
|
||||||
|
do_sample: bool = True,
|
||||||
|
*args,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.model_name = model_name
|
||||||
|
self.device = device
|
||||||
|
self.tokenizer = tokenizer
|
||||||
|
self.device = device
|
||||||
|
self.quantize = quantize
|
||||||
|
self.torch_type = torch_type
|
||||||
|
self.temperature = temperature
|
||||||
|
self.top_p = top_p
|
||||||
|
self.max_tokens = max_tokens
|
||||||
|
self.echo = echo
|
||||||
|
self.stream = stream
|
||||||
|
self.repetition_penalty = repetition_penalty
|
||||||
|
self.do_sample = do_sample
|
||||||
|
|
||||||
|
if os.environ.get("QUANT_ENABLED"):
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
with torch.cuda.device(device):
|
||||||
|
__, total_bytes = torch.cuda.mem_get_info()
|
||||||
|
total_gb = total_bytes / (1 << 30)
|
||||||
|
if total_gb < 40:
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
pass
|
||||||
|
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
self.tokenizer = LlamaTokenizer.from_pretrained(
|
||||||
|
tokenizer, trust_remote_code=True
|
||||||
|
)
|
||||||
|
|
||||||
|
if (
|
||||||
|
torch.cuda.is_available()
|
||||||
|
and torch.cuda.get_device_capability()[0] >= 8
|
||||||
|
):
|
||||||
|
torch_type = torch.bfloat16
|
||||||
|
else:
|
||||||
|
torch_type = torch.float16
|
||||||
|
|
||||||
|
print(
|
||||||
|
"========Use torch type as:{} with device:{}========\n\n"
|
||||||
|
.format(torch_type, device)
|
||||||
|
)
|
||||||
|
|
||||||
|
if "cuda" in device:
|
||||||
|
if QUANT_ENABLED:
|
||||||
|
self.model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
model_name,
|
||||||
|
load_in_4bit=True,
|
||||||
|
trust_remote_code=True,
|
||||||
|
torch_dtype=torch_type,
|
||||||
|
low_cpu_mem_usage=True,
|
||||||
|
*args,
|
||||||
|
**kwargs,
|
||||||
|
).eval()
|
||||||
|
else:
|
||||||
|
self.model = (
|
||||||
|
AutoModelForCausalLM.from_pretrained(
|
||||||
|
model_name,
|
||||||
|
load_in_4bit=False,
|
||||||
|
trust_remote_code=True,
|
||||||
|
torch_dtype=torch_type,
|
||||||
|
low_cpu_mem_usage=True,
|
||||||
|
*args,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
.to(device)
|
||||||
|
.eval()
|
||||||
|
)
|
||||||
|
|
||||||
|
else:
|
||||||
|
self.model = (
|
||||||
|
AutoModelForCausalLM.from_pretrained(
|
||||||
|
model_name,
|
||||||
|
trust_remote_code=True,
|
||||||
|
*args,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
.float()
|
||||||
|
.to(device)
|
||||||
|
.eval()
|
||||||
|
)
|
||||||
|
|
||||||
|
def run(self, task: str, img: str, *args, **kwargs):
|
||||||
|
"""
|
||||||
|
Generates a response using the CogVLM model. It processes the chat history and image data, if any,
|
||||||
|
and then invokes the model to generate a response.
|
||||||
|
"""
|
||||||
|
messages = [task]
|
||||||
|
|
||||||
|
params = dict(
|
||||||
|
messages=messages,
|
||||||
|
temperature=self.temperature,
|
||||||
|
repitition_penalty=self.repetition_penalty,
|
||||||
|
top_p=self.top_p,
|
||||||
|
max_new_tokens=self.max_tokens,
|
||||||
|
)
|
||||||
|
|
||||||
|
for response in self.generate_stream_cogvlm(params):
|
||||||
|
pass
|
||||||
|
|
||||||
|
return response
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def generate_stream_cogvlm(
|
||||||
|
self,
|
||||||
|
params: dict,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Generates a stream of responses using the CogVLM model in inference mode.
|
||||||
|
It's optimized to handle continuous input-output interactions with the model in a streaming manner.
|
||||||
|
"""
|
||||||
|
messages = params["messages"]
|
||||||
|
temperature = float(params.get("temperature", 1.0))
|
||||||
|
repetition_penalty = float(
|
||||||
|
params.get("repetition_penalty", 1.0)
|
||||||
|
)
|
||||||
|
top_p = float(params.get("top_p", 1.0))
|
||||||
|
max_new_tokens = int(params.get("max_tokens", 256))
|
||||||
|
query, history, image_list = self.process_history_and_images(
|
||||||
|
messages
|
||||||
|
)
|
||||||
|
|
||||||
|
logger.debug(f"==== request ====\n{query}")
|
||||||
|
|
||||||
|
input_by_model = self.model.build_conversation_input_ids(
|
||||||
|
self.tokenizer,
|
||||||
|
query=query,
|
||||||
|
history=history,
|
||||||
|
images=[image_list[-1]],
|
||||||
|
)
|
||||||
|
inputs = {
|
||||||
|
"input_ids": (
|
||||||
|
input_by_model["input_ids"]
|
||||||
|
.unsqueeze(0)
|
||||||
|
.to(self.device)
|
||||||
|
),
|
||||||
|
"token_type_ids": (
|
||||||
|
input_by_model["token_type_ids"]
|
||||||
|
.unsqueeze(0)
|
||||||
|
.to(self.device)
|
||||||
|
),
|
||||||
|
"attention_mask": (
|
||||||
|
input_by_model["attention_mask"]
|
||||||
|
.unsqueeze(0)
|
||||||
|
.to(self.device)
|
||||||
|
),
|
||||||
|
"images": [
|
||||||
|
[
|
||||||
|
input_by_model["images"][0]
|
||||||
|
.to(self.device)
|
||||||
|
.to(self.torch_type)
|
||||||
|
]
|
||||||
|
],
|
||||||
|
}
|
||||||
|
if (
|
||||||
|
"cross_images" in input_by_model
|
||||||
|
and input_by_model["cross_images"]
|
||||||
|
):
|
||||||
|
inputs["cross_images"] = [
|
||||||
|
[
|
||||||
|
input_by_model["cross_images"][0]
|
||||||
|
.to(self.device)
|
||||||
|
.to(self.torch_type)
|
||||||
|
]
|
||||||
|
]
|
||||||
|
|
||||||
|
input_echo_len = len(inputs["input_ids"][0])
|
||||||
|
streamer = TextIteratorStreamer(
|
||||||
|
tokenizer=self.tokenizer,
|
||||||
|
timeout=60.0,
|
||||||
|
skip_promptb=True,
|
||||||
|
skip_special_tokens=True,
|
||||||
|
)
|
||||||
|
gen_kwargs = {
|
||||||
|
"repetition_penalty": repetition_penalty,
|
||||||
|
"max_new_tokens": max_new_tokens,
|
||||||
|
"do_sample": True if temperature > 1e-5 else False,
|
||||||
|
"top_p": top_p if temperature > 1e-5 else 0,
|
||||||
|
"streamer": streamer,
|
||||||
|
}
|
||||||
|
if temperature > 1e-5:
|
||||||
|
gen_kwargs["temperature"] = temperature
|
||||||
|
|
||||||
|
total_len = 0
|
||||||
|
generated_text = ""
|
||||||
|
with torch.no_grad():
|
||||||
|
self.model.generate(**inputs, **gen_kwargs)
|
||||||
|
for next_text in streamer:
|
||||||
|
generated_text += next_text
|
||||||
|
yield {
|
||||||
|
"text": generated_text,
|
||||||
|
"usage": {
|
||||||
|
"prompt_tokens": input_echo_len,
|
||||||
|
"completion_tokens": (
|
||||||
|
total_len - input_echo_len
|
||||||
|
),
|
||||||
|
"total_tokens": total_len,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
ret = {
|
||||||
|
"text": generated_text,
|
||||||
|
"usage": {
|
||||||
|
"prompt_tokens": input_echo_len,
|
||||||
|
"completion_tokens": total_len - input_echo_len,
|
||||||
|
"total_tokens": total_len,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
yield ret
|
||||||
|
|
||||||
|
def process_history_and_images(
|
||||||
|
self,
|
||||||
|
messages: List[ChatMessageInput],
|
||||||
|
) -> Tuple[
|
||||||
|
Optional[str],
|
||||||
|
Optional[List[Tuple[str, str]]],
|
||||||
|
Optional[List[Image.Image]],
|
||||||
|
]:
|
||||||
|
"""
|
||||||
|
Process history messages to extract text, identify the last user query,
|
||||||
|
and convert base64 encoded image URLs to PIL images.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
messages(List[ChatMessageInput]): List of ChatMessageInput objects.
|
||||||
|
return: A tuple of three elements:
|
||||||
|
- The last user query as a string.
|
||||||
|
- Text history formatted as a list of tuples for the model.
|
||||||
|
- List of PIL Image objects extracted from the messages.
|
||||||
|
"""
|
||||||
|
formatted_history = []
|
||||||
|
image_list = []
|
||||||
|
last_user_query = ""
|
||||||
|
|
||||||
|
for i, message in enumerate(messages):
|
||||||
|
role = message.role
|
||||||
|
content = message.content
|
||||||
|
|
||||||
|
# Extract text content
|
||||||
|
if isinstance(content, list): # text
|
||||||
|
text_content = " ".join(
|
||||||
|
item.text
|
||||||
|
for item in content
|
||||||
|
if isinstance(item, TextContent)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
text_content = content
|
||||||
|
|
||||||
|
# Extract image data
|
||||||
|
if isinstance(content, list): # image
|
||||||
|
for item in content:
|
||||||
|
if isinstance(item, ImageUrlContent):
|
||||||
|
image_url = item.image_url.url
|
||||||
|
if image_url.startswith(
|
||||||
|
"data:image/jpeg;base64,"
|
||||||
|
):
|
||||||
|
base64_encoded_image = image_url.split(
|
||||||
|
"data:image/jpeg;base64,"
|
||||||
|
)[1]
|
||||||
|
image_data = base64.b64decode(
|
||||||
|
base64_encoded_image
|
||||||
|
)
|
||||||
|
image = Image.open(
|
||||||
|
BytesIO(image_data)
|
||||||
|
).convert("RGB")
|
||||||
|
image_list.append(image)
|
||||||
|
|
||||||
|
# Format history
|
||||||
|
if role == "user":
|
||||||
|
if i == len(messages) - 1:
|
||||||
|
last_user_query = text_content
|
||||||
|
else:
|
||||||
|
formatted_history.append((text_content, ""))
|
||||||
|
elif role == "assistant":
|
||||||
|
if formatted_history:
|
||||||
|
if formatted_history[-1][1] != "":
|
||||||
|
assert False, (
|
||||||
|
"the last query is answered. answer"
|
||||||
|
f" again. {formatted_history[-1][0]},"
|
||||||
|
f" {formatted_history[-1][1]},"
|
||||||
|
f" {text_content}"
|
||||||
|
)
|
||||||
|
formatted_history[-1] = (
|
||||||
|
formatted_history[-1][0],
|
||||||
|
text_content,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert False, "assistant reply before user"
|
||||||
|
else:
|
||||||
|
assert False, f"unrecognized role: {role}"
|
||||||
|
|
||||||
|
return last_user_query, formatted_history, image_list
|
||||||
|
|
||||||
|
async def predict(self, params: dict):
|
||||||
|
"""
|
||||||
|
Handle streaming predictions. It continuously generates responses for a given input stream.
|
||||||
|
This is particularly useful for real-time, continuous interactions with the model.
|
||||||
|
"""
|
||||||
|
|
||||||
|
choice_data = ChatCompletionResponseStreamChoice(
|
||||||
|
index=0,
|
||||||
|
delta=DeltaMessage(role="assistant"),
|
||||||
|
finish_reason=None,
|
||||||
|
)
|
||||||
|
chunk = ChatCompletionResponse(
|
||||||
|
model=self.model_name,
|
||||||
|
choices=[choice_data],
|
||||||
|
object="chat.completion.chunk",
|
||||||
|
)
|
||||||
|
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
|
||||||
|
|
||||||
|
previous_text = ""
|
||||||
|
for new_response in self.generate_stream_cogvlm(params):
|
||||||
|
decoded_unicode = new_response["text"]
|
||||||
|
delta_text = decoded_unicode[len(previous_text) :]
|
||||||
|
previous_text = decoded_unicode
|
||||||
|
delta = DeltaMessage(
|
||||||
|
content=delta_text,
|
||||||
|
role="assistant",
|
||||||
|
)
|
||||||
|
choice_data = ChatCompletionResponseStreamChoice(
|
||||||
|
index=0,
|
||||||
|
delta=delta,
|
||||||
|
)
|
||||||
|
chunk = ChatCompletionResponse(
|
||||||
|
model=self.model_name,
|
||||||
|
choices=[choice_data],
|
||||||
|
object="chat.completion.chunk",
|
||||||
|
)
|
||||||
|
yield "{}".format(
|
||||||
|
chunk.model_dump_json(exclude_unset=True)
|
||||||
|
)
|
||||||
|
choice_data = ChatCompletionResponseStreamChoice(
|
||||||
|
index=0,
|
||||||
|
delta=DeltaMessage(),
|
||||||
|
)
|
||||||
|
chunk = ChatCompletionResponse(
|
||||||
|
model=self.model_name,
|
||||||
|
choices=[choice_data],
|
||||||
|
object="chat.completion.chunk",
|
||||||
|
)
|
||||||
|
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
|
@ -0,0 +1,87 @@
|
|||||||
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||||
|
import json
|
||||||
|
from swarms.models.base_llm import AbstractLLM
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
|
||||||
|
class FireFunctionCaller(AbstractLLM):
|
||||||
|
"""
|
||||||
|
A class that represents a caller for the FireFunction model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model_name (str): The name of the model to be used.
|
||||||
|
device (str): The device to be used.
|
||||||
|
function_spec (Any): The specification of the function.
|
||||||
|
max_tokens (int): The maximum number of tokens.
|
||||||
|
system_prompt (str): The system prompt.
|
||||||
|
*args: Variable length argument list.
|
||||||
|
**kwargs: Arbitrary keyword arguments.
|
||||||
|
|
||||||
|
Methods:
|
||||||
|
run(self, task: str, *args, **kwargs) -> None: Run the function with the given task and arguments.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> fire_function_caller = FireFunctionCaller()
|
||||||
|
>>> fire_function_caller.run("Add 2 and 3")
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model_name: str = "fireworks-ai/firefunction-v1",
|
||||||
|
device: str = "cuda",
|
||||||
|
function_spec: Any = None,
|
||||||
|
max_tokens: int = 3000,
|
||||||
|
system_prompt: str = "You are a helpful assistant with access to functions. Use them if required.",
|
||||||
|
*args,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
super().__init__(model_name, device)
|
||||||
|
self.model_name = model_name
|
||||||
|
self.device = device
|
||||||
|
self.fucntion_spec = function_spec
|
||||||
|
self.max_tokens = max_tokens
|
||||||
|
self.system_prompt = system_prompt
|
||||||
|
|
||||||
|
self.model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
model_name, device_map="auto", *args, **kwargs
|
||||||
|
)
|
||||||
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||||
|
|
||||||
|
self.functions = json.dumps(function_spec, indent=4)
|
||||||
|
|
||||||
|
def run(self, task: str, *args, **kwargs):
|
||||||
|
"""
|
||||||
|
Run the function with the given task and arguments.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task (str): The task to be performed.
|
||||||
|
*args: Variable length argument list.
|
||||||
|
**kwargs: Arbitrary keyword arguments.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
None
|
||||||
|
"""
|
||||||
|
messages = [
|
||||||
|
{"role": "functions", "content": self.functions},
|
||||||
|
{
|
||||||
|
"role": "system",
|
||||||
|
"content": self.system_prompt,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": task,
|
||||||
|
},
|
||||||
|
]
|
||||||
|
|
||||||
|
model_inputs = self.tokenizer.apply_chat_template(
|
||||||
|
messages, return_tensors="pt"
|
||||||
|
).to(self.model.device)
|
||||||
|
|
||||||
|
generated_ids = self.model.generate(
|
||||||
|
model_inputs,
|
||||||
|
max_new_tokens=self.max_tokens,
|
||||||
|
*args,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
decoded = self.tokenizer.batch_decode(generated_ids)
|
||||||
|
print(decoded[0])
|
@ -0,0 +1,41 @@
|
|||||||
|
import pytest
|
||||||
|
from unittest.mock import MagicMock
|
||||||
|
from swarms.models.fire_function import FireFunctionCaller
|
||||||
|
|
||||||
|
def test_fire_function_caller_run(mocker):
|
||||||
|
# Create mock model and tokenizer
|
||||||
|
model = MagicMock()
|
||||||
|
tokenizer = MagicMock()
|
||||||
|
mocker.patch.object(FireFunctionCaller, 'model', model)
|
||||||
|
mocker.patch.object(FireFunctionCaller, 'tokenizer', tokenizer)
|
||||||
|
|
||||||
|
# Create mock task and arguments
|
||||||
|
task = "Add 2 and 3"
|
||||||
|
args = (2, 3)
|
||||||
|
kwargs = {}
|
||||||
|
|
||||||
|
# Create mock generated_ids and decoded output
|
||||||
|
generated_ids = [1, 2, 3]
|
||||||
|
decoded_output = "5"
|
||||||
|
model.generate.return_value = generated_ids
|
||||||
|
tokenizer.batch_decode.return_value = [decoded_output]
|
||||||
|
|
||||||
|
# Create FireFunctionCaller instance
|
||||||
|
fire_function_caller = FireFunctionCaller()
|
||||||
|
|
||||||
|
# Run the function
|
||||||
|
fire_function_caller.run(task, *args, **kwargs)
|
||||||
|
|
||||||
|
# Assert model.generate was called with the correct inputs
|
||||||
|
model.generate.assert_called_once_with(
|
||||||
|
tokenizer.apply_chat_template.return_value,
|
||||||
|
max_new_tokens=fire_function_caller.max_tokens,
|
||||||
|
*args,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Assert tokenizer.batch_decode was called with the correct inputs
|
||||||
|
tokenizer.batch_decode.assert_called_once_with(generated_ids)
|
||||||
|
|
||||||
|
# Assert the decoded output is printed
|
||||||
|
assert decoded_output in mocker.patch.object(print, 'call_args_list')
|
@ -0,0 +1,45 @@
|
|||||||
|
from unittest.mock import MagicMock
|
||||||
|
|
||||||
|
|
||||||
|
from swarms.models.fire_function import FireFunctionCaller
|
||||||
|
|
||||||
|
|
||||||
|
def test_fire_function_caller_run(mocker):
|
||||||
|
# Create mock model and tokenizer
|
||||||
|
model = MagicMock()
|
||||||
|
tokenizer = MagicMock()
|
||||||
|
mocker.patch.object(FireFunctionCaller, "model", model)
|
||||||
|
mocker.patch.object(FireFunctionCaller, "tokenizer", tokenizer)
|
||||||
|
|
||||||
|
# Create mock task and arguments
|
||||||
|
task = "Add 2 and 3"
|
||||||
|
args = (2, 3)
|
||||||
|
kwargs = {}
|
||||||
|
|
||||||
|
# Create mock generated_ids and decoded output
|
||||||
|
generated_ids = [1, 2, 3]
|
||||||
|
decoded_output = "5"
|
||||||
|
model.generate.return_value = generated_ids
|
||||||
|
tokenizer.batch_decode.return_value = [decoded_output]
|
||||||
|
|
||||||
|
# Create FireFunctionCaller instance
|
||||||
|
fire_function_caller = FireFunctionCaller()
|
||||||
|
|
||||||
|
# Run the function
|
||||||
|
fire_function_caller.run(task, *args, **kwargs)
|
||||||
|
|
||||||
|
# Assert model.generate was called with the correct inputs
|
||||||
|
model.generate.assert_called_once_with(
|
||||||
|
tokenizer.apply_chat_template.return_value,
|
||||||
|
max_new_tokens=fire_function_caller.max_tokens,
|
||||||
|
*args,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Assert tokenizer.batch_decode was called with the correct inputs
|
||||||
|
tokenizer.batch_decode.assert_called_once_with(generated_ids)
|
||||||
|
|
||||||
|
# Assert the decoded output is printed
|
||||||
|
assert decoded_output in mocker.patch.object(
|
||||||
|
print, "call_args_list"
|
||||||
|
)
|
Loading…
Reference in new issue