[FEAT][Improved Logging]

pull/392/head
Kye 11 months ago
parent afc8df570a
commit c82f4f9b5a

@ -3,7 +3,7 @@ from swarms import Agent, OpenAIChat
## Initialize the workflow
agent = Agent(
llm=OpenAIChat(),
max_loops="auto",
max_loops=1,
autosave=True,
dashboard=False,
streaming_on=True,
@ -14,3 +14,4 @@ agent = Agent(
agent(
"Find a chick fil a equivalent in hayes valley"
)

@ -4,9 +4,9 @@ from swarms import Agent, MajorityVoting, OpenAIChat
llm = OpenAIChat()
# Initialize the agents
agent1 = Agent(llm=llm, max_loops=1)
agent2 = Agent(llm=llm, max_loops=1)
agent3 = Agent(llm=llm, max_loops=1)
agent1 = Agent(agent_name="worker-1", llm=llm, max_loops=1)
agent2 = Agent(agent_name="worker-2", llm=llm, max_loops=1)
agent3 = Agent(agent_name="worker3", llm=llm, max_loops=1)
# Initialize the majority voting

@ -6,7 +6,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry]
name = "swarms"
version = "4.1.6"
version = "4.1.7"
description = "Swarms - Pytorch"
license = "MIT"
authors = ["Kye Gomez <kye@apac.ai>"]
@ -51,6 +51,7 @@ httpx = "0.24.1"
tiktoken = "0.4.0"
attrs = "22.2.0"
ratelimit = "2.2.1"
loguru = "*"
cohere = "4.24"
huggingface-hub = "*"
pydantic = "1.10.12"

@ -16,6 +16,7 @@ sentencepiece==0.1.98
requests_mock
pypdf==4.0.1
accelerate==0.22.0
loguru
chromadb
tensorflow
optimum

@ -1,16 +1,23 @@
############################################ LLMs
from swarms.models.anthropic import Anthropic # noqa: E402
# 3############ Embedding models
from swarms.models.base_embedding_model import BaseEmbeddingModel
from swarms.models.base_llm import AbstractLLM # noqa: E402
################# MultiModal Models
from swarms.models.base_multimodal_model import (
BaseMultiModalModel,
) # noqa: E402
)
# noqa: E402
from swarms.models.biogpt import BioGPT # noqa: E402
from swarms.models.clipq import CLIPQ # noqa: E402
# from swarms.models.dalle3 import Dalle3
# from swarms.models.distilled_whisperx import DistilWhisperModel # noqa: E402
# from swarms.models.whisperx_model import WhisperX # noqa: E402
# from swarms.models.kosmos_two import Kosmos # noqa: E402
# from swarms.models.cog_agent import CogAgent # noqa: E402
## Function calling models
from swarms.models.fire_function import (
FireFunctionCaller,
)
from swarms.models.fuyu import Fuyu # noqa: E402
from swarms.models.gemini import Gemini # noqa: E402
from swarms.models.gigabind import Gigabind # noqa: E402
@ -20,9 +27,9 @@ from swarms.models.idefics import Idefics # noqa: E402
from swarms.models.kosmos_two import Kosmos # noqa: E402
from swarms.models.layoutlm_document_qa import (
LayoutLMDocumentQA,
) # noqa: E402
)
# from swarms.models.vip_llava import VipLlavaMultiModal # noqa: E402
# noqa: E402
from swarms.models.llava import LavaMultiModal # noqa: E402
from swarms.models.mistral import Mistral # noqa: E402
from swarms.models.mixtral import Mixtral # noqa: E402
@ -32,18 +39,18 @@ from swarms.models.openai_models import (
AzureOpenAI,
OpenAI,
OpenAIChat,
) # noqa: E402
)
# noqa: E402
from swarms.models.openai_tts import OpenAITTS # noqa: E402
from swarms.models.petals import Petals # noqa: E402
from swarms.models.qwen import QwenVLMultiModal # noqa: E402
from swarms.models.roboflow_model import RoboflowMultiModal
from swarms.models.sam_supervision import SegmentAnythingMarkGenerator
##### Utils
from swarms.models.sampling_params import (
SamplingParams,
SamplingType,
) # noqa: E402
)
from swarms.models.timm import TimmModel # noqa: E402
# from swarms.models.modelscope_pipeline import ModelScopePipeline
@ -62,26 +69,19 @@ from swarms.models.types import ( # noqa: E402
)
from swarms.models.ultralytics_model import (
UltralyticsModel,
) # noqa: E402
)
# noqa: E402
from swarms.models.vilt import Vilt # noqa: E402
from swarms.models.wizard_storytelling import (
WizardLLMStoryTeller,
) # noqa: E402
)
# noqa: E402
# from swarms.models.vllm import vLLM # noqa: E402
from swarms.models.zephyr import Zephyr # noqa: E402
from swarms.models.zeroscope import ZeroscopeTTV # noqa: E402
# from swarms.models.dalle3 import Dalle3
# from swarms.models.distilled_whisperx import DistilWhisperModel # noqa: E402
# from swarms.models.whisperx_model import WhisperX # noqa: E402
# from swarms.models.kosmos_two import Kosmos # noqa: E402
# from swarms.models.cog_agent import CogAgent # noqa: E402
################# Tokenizers
__all__ = [
"AbstractLLM",
"Anthropic",
@ -100,7 +100,6 @@ __all__ = [
"HuggingfaceLLM",
"MPT7B",
"WizardLLMStoryTeller",
# "GPT4Vision",
# "Dalle3",
# "DistilWhisperModel",
"GPT4VisionAPI",
@ -118,7 +117,6 @@ __all__ = [
"TogetherLLM",
"TimmModel",
"UltralyticsModel",
# "VipLlavaMultiModal",
"LavaMultiModal",
"QwenVLMultiModal",
"CLIPQ",
@ -129,4 +127,5 @@ __all__ = [
"SegmentAnythingMarkGenerator",
"SamplingType",
"SamplingParams",
"FireFunctionCaller",
]

@ -0,0 +1,530 @@
import base64
import os
import time
from io import BytesIO
from typing import List, Literal, Optional, Tuple, Union
import torch
from PIL import Image
from pydantic import BaseModel, Field
from transformers import (
AutoModelForCausalLM,
LlamaTokenizer,
TextIteratorStreamer,
)
from swarms.models.base_multimodal_model import BaseMultiModalModel
from swarms.utils.logger import logger
MODEL_PATH = "THUDM/cogvlm-chat-hf"
TOKENIZER_PATH = "lmsys/vicuna-7b-v1.5"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
QUANT_ENABLED = False
class ImageUrl(BaseModel):
url: str
class TextContent(BaseModel):
type: Literal["text"]
text: str
class ImageUrlContent(BaseModel):
type: Literal["image_url"]
image_url: ImageUrl
ContentItem = Union[TextContent, ImageUrlContent]
class ChatMessageInput(BaseModel):
role: Literal["user", "assistant", "system"]
content: Union[str, List[ContentItem]]
name: Optional[str] = None
class ChatMessageResponse(BaseModel):
role: Literal["assistant"]
content: str = None
name: Optional[str] = None
class DeltaMessage(BaseModel):
role: Optional[Literal["user", "assistant", "system"]] = None
content: Optional[str] = None
class ChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessageInput]
temperature: Optional[float] = 0.8
top_p: Optional[float] = 0.8
max_tokens: Optional[int] = None
stream: Optional[bool] = False
# Additional parameters
repetition_penalty: Optional[float] = 1.0
class ChatCompletionResponseChoice(BaseModel):
index: int
message: ChatMessageResponse
class ChatCompletionResponseStreamChoice(BaseModel):
index: int
delta: DeltaMessage
class UsageInfo(BaseModel):
prompt_tokens: int = 0
total_tokens: int = 0
completion_tokens: Optional[int] = 0
class ChatCompletionResponse(BaseModel):
model: str
object: Literal["chat.completion", "chat.completion.chunk"]
choices: List[
Union[
ChatCompletionResponseChoice,
ChatCompletionResponseStreamChoice,
]
]
created: Optional[int] = Field(
default_factory=lambda: int(time.time())
)
usage: Optional[UsageInfo] = None
# async def create_chat_completion(request: ChatCompletionRequest):
# global model, tokenizer
# gen_params = dict(
# messages=request.messages,
# temperature=request.temperature,
# top_p=request.top_p,
# max_tokens=request.max_tokens or 1024,
# echo=False,
# stream=request.stream,
# )
# # if request.stream:
# # predict(request.model, gen_params)
# # response = generate_cogvlm(model, tokenizer, gen_params)
# usage = UsageInfo()
# message = ChatMessageResponse(
# role="assistant",
# content=response["text"],
# )
# logger.debug(f"==== message ====\n{message}")
# choice_data = ChatCompletionResponseChoice(
# index=0,
# message=message,
# )
# task_usage = UsageInfo.model_validate(response["usage"])
# for usage_key, usage_value in task_usage.model_dump().items():
# setattr(
# usage, usage_key, getattr(usage, usage_key) + usage_value
# )
# return ChatCompletionResponse(
# model=request.model,
# choices=[choice_data],
# object="chat.completion",
# usage=usage,
# )
class CogVLMMultiModal(BaseMultiModalModel):
"""
Initializes the CogVLM model.
Args:
model_name (str): The path or name of the pre-trained model.
tokenizer (str): The path or name of the tokenizer.
device (str): The device to run the model on.
quantize (bool): Whether to enable quantization.
torch_type (str): The torch data type to use.
temperature (float): The temperature for sampling.
top_p (float): The top-p value for sampling.
max_tokens (int): The maximum number of tokens to generate.
echo (bool): Whether to echo the input text.
stream (bool): Whether to stream the output.
repetition_penalty (float): The repetition penalty for sampling.
do_sample (bool): Whether to use sampling during generation.
*args: Additional positional arguments.
**kwargs: Additional keyword arguments.
Methods:
run: Generates a response using the CogVLM model.
generate_stream_cogvlm: Generates a stream of responses using the CogVLM model in inference mode.
process_history_and_images: Processes history messages to extract text, identify the last user query, and convert base64 encoded image URLs to PIL images.
Example:
>>> model = CogVLMMultiModal()
>>> response = model("Describe this image with meticlous details.", "https://example.com/image.jpg")
>>> print(response)
"""
def __init__(
self,
model_name: str = MODEL_PATH,
tokenizer: str = TOKENIZER_PATH,
device: str = DEVICE,
quantize: bool = QUANT_ENABLED,
torch_type: str = "float16",
temperature: float = 0.5,
top_p: float = 0.9,
max_tokens: int = 3500,
echo: bool = False,
stream: bool = False,
repetition_penalty: float = 1.0,
do_sample: bool = True,
*args,
**kwargs,
):
super().__init__()
self.model_name = model_name
self.device = device
self.tokenizer = tokenizer
self.device = device
self.quantize = quantize
self.torch_type = torch_type
self.temperature = temperature
self.top_p = top_p
self.max_tokens = max_tokens
self.echo = echo
self.stream = stream
self.repetition_penalty = repetition_penalty
self.do_sample = do_sample
if os.environ.get("QUANT_ENABLED"):
pass
else:
with torch.cuda.device(device):
__, total_bytes = torch.cuda.mem_get_info()
total_gb = total_bytes / (1 << 30)
if total_gb < 40:
pass
else:
pass
torch.cuda.empty_cache()
self.tokenizer = LlamaTokenizer.from_pretrained(
tokenizer, trust_remote_code=True
)
if (
torch.cuda.is_available()
and torch.cuda.get_device_capability()[0] >= 8
):
torch_type = torch.bfloat16
else:
torch_type = torch.float16
print(
"========Use torch type as:{} with device:{}========\n\n"
.format(torch_type, device)
)
if "cuda" in device:
if QUANT_ENABLED:
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
load_in_4bit=True,
trust_remote_code=True,
torch_dtype=torch_type,
low_cpu_mem_usage=True,
*args,
**kwargs,
).eval()
else:
self.model = (
AutoModelForCausalLM.from_pretrained(
model_name,
load_in_4bit=False,
trust_remote_code=True,
torch_dtype=torch_type,
low_cpu_mem_usage=True,
*args,
**kwargs,
)
.to(device)
.eval()
)
else:
self.model = (
AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
*args,
**kwargs,
)
.float()
.to(device)
.eval()
)
def run(self, task: str, img: str, *args, **kwargs):
"""
Generates a response using the CogVLM model. It processes the chat history and image data, if any,
and then invokes the model to generate a response.
"""
messages = [task]
params = dict(
messages=messages,
temperature=self.temperature,
repitition_penalty=self.repetition_penalty,
top_p=self.top_p,
max_new_tokens=self.max_tokens,
)
for response in self.generate_stream_cogvlm(params):
pass
return response
@torch.inference_mode()
def generate_stream_cogvlm(
self,
params: dict,
):
"""
Generates a stream of responses using the CogVLM model in inference mode.
It's optimized to handle continuous input-output interactions with the model in a streaming manner.
"""
messages = params["messages"]
temperature = float(params.get("temperature", 1.0))
repetition_penalty = float(
params.get("repetition_penalty", 1.0)
)
top_p = float(params.get("top_p", 1.0))
max_new_tokens = int(params.get("max_tokens", 256))
query, history, image_list = self.process_history_and_images(
messages
)
logger.debug(f"==== request ====\n{query}")
input_by_model = self.model.build_conversation_input_ids(
self.tokenizer,
query=query,
history=history,
images=[image_list[-1]],
)
inputs = {
"input_ids": (
input_by_model["input_ids"]
.unsqueeze(0)
.to(self.device)
),
"token_type_ids": (
input_by_model["token_type_ids"]
.unsqueeze(0)
.to(self.device)
),
"attention_mask": (
input_by_model["attention_mask"]
.unsqueeze(0)
.to(self.device)
),
"images": [
[
input_by_model["images"][0]
.to(self.device)
.to(self.torch_type)
]
],
}
if (
"cross_images" in input_by_model
and input_by_model["cross_images"]
):
inputs["cross_images"] = [
[
input_by_model["cross_images"][0]
.to(self.device)
.to(self.torch_type)
]
]
input_echo_len = len(inputs["input_ids"][0])
streamer = TextIteratorStreamer(
tokenizer=self.tokenizer,
timeout=60.0,
skip_promptb=True,
skip_special_tokens=True,
)
gen_kwargs = {
"repetition_penalty": repetition_penalty,
"max_new_tokens": max_new_tokens,
"do_sample": True if temperature > 1e-5 else False,
"top_p": top_p if temperature > 1e-5 else 0,
"streamer": streamer,
}
if temperature > 1e-5:
gen_kwargs["temperature"] = temperature
total_len = 0
generated_text = ""
with torch.no_grad():
self.model.generate(**inputs, **gen_kwargs)
for next_text in streamer:
generated_text += next_text
yield {
"text": generated_text,
"usage": {
"prompt_tokens": input_echo_len,
"completion_tokens": (
total_len - input_echo_len
),
"total_tokens": total_len,
},
}
ret = {
"text": generated_text,
"usage": {
"prompt_tokens": input_echo_len,
"completion_tokens": total_len - input_echo_len,
"total_tokens": total_len,
},
}
yield ret
def process_history_and_images(
self,
messages: List[ChatMessageInput],
) -> Tuple[
Optional[str],
Optional[List[Tuple[str, str]]],
Optional[List[Image.Image]],
]:
"""
Process history messages to extract text, identify the last user query,
and convert base64 encoded image URLs to PIL images.
Args:
messages(List[ChatMessageInput]): List of ChatMessageInput objects.
return: A tuple of three elements:
- The last user query as a string.
- Text history formatted as a list of tuples for the model.
- List of PIL Image objects extracted from the messages.
"""
formatted_history = []
image_list = []
last_user_query = ""
for i, message in enumerate(messages):
role = message.role
content = message.content
# Extract text content
if isinstance(content, list): # text
text_content = " ".join(
item.text
for item in content
if isinstance(item, TextContent)
)
else:
text_content = content
# Extract image data
if isinstance(content, list): # image
for item in content:
if isinstance(item, ImageUrlContent):
image_url = item.image_url.url
if image_url.startswith(
"data:image/jpeg;base64,"
):
base64_encoded_image = image_url.split(
"data:image/jpeg;base64,"
)[1]
image_data = base64.b64decode(
base64_encoded_image
)
image = Image.open(
BytesIO(image_data)
).convert("RGB")
image_list.append(image)
# Format history
if role == "user":
if i == len(messages) - 1:
last_user_query = text_content
else:
formatted_history.append((text_content, ""))
elif role == "assistant":
if formatted_history:
if formatted_history[-1][1] != "":
assert False, (
"the last query is answered. answer"
f" again. {formatted_history[-1][0]},"
f" {formatted_history[-1][1]},"
f" {text_content}"
)
formatted_history[-1] = (
formatted_history[-1][0],
text_content,
)
else:
assert False, "assistant reply before user"
else:
assert False, f"unrecognized role: {role}"
return last_user_query, formatted_history, image_list
async def predict(self, params: dict):
"""
Handle streaming predictions. It continuously generates responses for a given input stream.
This is particularly useful for real-time, continuous interactions with the model.
"""
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(role="assistant"),
finish_reason=None,
)
chunk = ChatCompletionResponse(
model=self.model_name,
choices=[choice_data],
object="chat.completion.chunk",
)
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
previous_text = ""
for new_response in self.generate_stream_cogvlm(params):
decoded_unicode = new_response["text"]
delta_text = decoded_unicode[len(previous_text) :]
previous_text = decoded_unicode
delta = DeltaMessage(
content=delta_text,
role="assistant",
)
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=delta,
)
chunk = ChatCompletionResponse(
model=self.model_name,
choices=[choice_data],
object="chat.completion.chunk",
)
yield "{}".format(
chunk.model_dump_json(exclude_unset=True)
)
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(),
)
chunk = ChatCompletionResponse(
model=self.model_name,
choices=[choice_data],
object="chat.completion.chunk",
)
yield "{}".format(chunk.model_dump_json(exclude_unset=True))

@ -0,0 +1,87 @@
from transformers import AutoModelForCausalLM, AutoTokenizer
import json
from swarms.models.base_llm import AbstractLLM
from typing import Any
class FireFunctionCaller(AbstractLLM):
"""
A class that represents a caller for the FireFunction model.
Args:
model_name (str): The name of the model to be used.
device (str): The device to be used.
function_spec (Any): The specification of the function.
max_tokens (int): The maximum number of tokens.
system_prompt (str): The system prompt.
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Methods:
run(self, task: str, *args, **kwargs) -> None: Run the function with the given task and arguments.
Examples:
>>> fire_function_caller = FireFunctionCaller()
>>> fire_function_caller.run("Add 2 and 3")
"""
def __init__(
self,
model_name: str = "fireworks-ai/firefunction-v1",
device: str = "cuda",
function_spec: Any = None,
max_tokens: int = 3000,
system_prompt: str = "You are a helpful assistant with access to functions. Use them if required.",
*args,
**kwargs,
):
super().__init__(model_name, device)
self.model_name = model_name
self.device = device
self.fucntion_spec = function_spec
self.max_tokens = max_tokens
self.system_prompt = system_prompt
self.model = AutoModelForCausalLM.from_pretrained(
model_name, device_map="auto", *args, **kwargs
)
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.functions = json.dumps(function_spec, indent=4)
def run(self, task: str, *args, **kwargs):
"""
Run the function with the given task and arguments.
Args:
task (str): The task to be performed.
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Returns:
None
"""
messages = [
{"role": "functions", "content": self.functions},
{
"role": "system",
"content": self.system_prompt,
},
{
"role": "user",
"content": task,
},
]
model_inputs = self.tokenizer.apply_chat_template(
messages, return_tensors="pt"
).to(self.model.device)
generated_ids = self.model.generate(
model_inputs,
max_new_tokens=self.max_tokens,
*args,
**kwargs,
)
decoded = self.tokenizer.batch_decode(generated_ids)
print(decoded[0])

@ -0,0 +1,41 @@
import pytest
from unittest.mock import MagicMock
from swarms.models.fire_function import FireFunctionCaller
def test_fire_function_caller_run(mocker):
# Create mock model and tokenizer
model = MagicMock()
tokenizer = MagicMock()
mocker.patch.object(FireFunctionCaller, 'model', model)
mocker.patch.object(FireFunctionCaller, 'tokenizer', tokenizer)
# Create mock task and arguments
task = "Add 2 and 3"
args = (2, 3)
kwargs = {}
# Create mock generated_ids and decoded output
generated_ids = [1, 2, 3]
decoded_output = "5"
model.generate.return_value = generated_ids
tokenizer.batch_decode.return_value = [decoded_output]
# Create FireFunctionCaller instance
fire_function_caller = FireFunctionCaller()
# Run the function
fire_function_caller.run(task, *args, **kwargs)
# Assert model.generate was called with the correct inputs
model.generate.assert_called_once_with(
tokenizer.apply_chat_template.return_value,
max_new_tokens=fire_function_caller.max_tokens,
*args,
**kwargs,
)
# Assert tokenizer.batch_decode was called with the correct inputs
tokenizer.batch_decode.assert_called_once_with(generated_ids)
# Assert the decoded output is printed
assert decoded_output in mocker.patch.object(print, 'call_args_list')

@ -3,10 +3,12 @@ import json
import logging
import os
import random
import sys
import time
import uuid
from typing import Any, Callable, Dict, List, Optional, Tuple
from loguru import logger
from termcolor import colored
from swarms.memory.base_vectordb import AbstractVectorDatabase
@ -22,7 +24,8 @@ from swarms.tools.exec_tool import execute_tool_by_name
from swarms.tools.tool import BaseTool
from swarms.utils.code_interpreter import SubprocessCodeInterpreter
from swarms.utils.data_to_text import data_to_text
from swarms.utils.logger import logger
# from swarms.utils.logger import logger
from swarms.utils.parse_code import extract_code_from_markdown
from swarms.utils.pdf_to_text import pdf_to_text
from swarms.utils.token_count_tiktoken import limit_tokens_from_string
@ -51,10 +54,18 @@ def agent_id():
return str(uuid.uuid4())
# Task ID generator
def task_id():
"""
Generate a unique task ID.
Returns:
str: A string representation of a UUID.
"""
return str(uuid.uuid4())
# Step ID generator
def step_id():
return str(uuid.uuid1())
@ -194,6 +205,10 @@ class Agent:
callback: Optional[Callable] = None,
metadata: Optional[Dict[str, Any]] = None,
callbacks: Optional[List[Callable]] = None,
logger_handler: Any = sys.stderr,
search_algorithm: Optional[Callable] = None,
logs_to_filename: Optional[str] = None,
evaluator: Optional[Callable] = None,
*args,
**kwargs,
):
@ -243,9 +258,14 @@ class Agent:
self.callback = callback
self.metadata = metadata
self.callbacks = callbacks
self.logger_handler = logger_handler
self.search_algorithm = search_algorithm
self.logs_to_filename = logs_to_filename
self.evaluator = evaluator
# The max_loops will be set dynamically if the dynamic_loop
if self.dynamic_loops:
logger.info("Dynamic loops enabled")
self.max_loops = "auto"
# If multimodal = yes then set the sop to the multimodal sop
@ -260,7 +280,9 @@ class Agent:
self.feedback = []
# Initialize the code executor
self.code_executor = SubprocessCodeInterpreter()
self.code_executor = SubprocessCodeInterpreter(
debug_mode=True,
)
# If the preset stopping token is enabled then set the stopping token to the preset stopping token
if preset_stopping_token:
@ -279,11 +301,12 @@ class Agent:
self.get_docs_from_doc_folders()
# If tokenizer and context length exists then:
if self.tokenizer and self.context_length:
self.truncate_history()
# if self.tokenizer and self.context_length:
# self.truncate_history()
if verbose:
logger.setLevel(logging.DEBUG)
# If verbose is enabled then set the logger level to info
# if verbose:
# logger.setLevel(logging.INFO)
# If tools are provided then set the tool prompt by adding to sop
if self.tools:
@ -308,6 +331,21 @@ class Agent:
# Step cache
self.step_cache = []
# Set the logger handler
if logger_handler:
logger.add(
f"{self.agent_name}.log",
level="INFO",
colorize=True,
format=(
"<green>{time}</green> <level>{message}</level>"
),
backtrace=True,
diagnose=True,
)
# logger.info("Creating Agent {}".format(self.agent_name))
def set_system_prompt(self, system_prompt: str):
"""Set the system prompt"""
self.system_prompt = system_prompt
@ -342,6 +380,7 @@ class Agent:
if hasattr(self.llm, "temperature"):
# Randomly change the temperature attribute of self.llm object
self.llm.temperature = random.uniform(0.0, 1.0)
logger.info(f"Temperature: {self.llm.temperature}")
else:
# Use a default temperature
self.llm.temperature = 0.7
@ -359,6 +398,7 @@ class Agent:
def add_task_to_memory(self, task: str):
"""Add the task to the memory"""
try:
logger.info(f"Adding task to memory: {task}")
self.short_memory.add(f"{self.user_name}: {task}")
except Exception as error:
print(
@ -370,6 +410,7 @@ class Agent:
def add_message_to_memory(self, message: str):
"""Add the message to the memory"""
try:
logger.info(f"Adding message to memory: {message}")
self.short_memory.add(
role=self.agent_name, content=message
)
@ -590,12 +631,26 @@ class Agent:
# Log each step
step = Step(
input=task,
task_id=task_id,
step_id=step_id,
output=response,
input=str(task),
task_id=str(task_id),
step_id=str(step_id),
output=str(response),
status="running",
)
if self.evaluator:
evaluated_response = self.evaluator(
response
)
out = (
f"Response: {response}\nEvaluated"
f" Response: {evaluated_response}"
)
out = self.short_memory.add(
"Evaluator", out
)
# Check to see if stopping token is in the output to stop the loop
if self.stopping_token:
if self._check_stopping_condition(
@ -679,20 +734,6 @@ class Agent:
"""
self.run(task, img, *args, **kwargs)
def _run(self, **kwargs: Any) -> str:
"""Run the agent on a task
Returns:
str: _description_
"""
try:
task = self.format_prompt(**kwargs)
response, history = self._generate(task, task)
logging.info(f"Message history: {history}")
return response
except Exception as error:
print(colored(f"Error running agent: {error}", "red"))
def agent_history_prompt(
self,
history: str = None,
@ -710,13 +751,12 @@ class Agent:
if self.sop:
system_prompt = self.system_prompt
agent_history_prompt = f"""
SYSTEM_PROMPT: {system_prompt}
role: system
{system_prompt}
Follow this standard operating procedure (SOP) to complete tasks:
{self.sop}
-----------------
################ CHAT HISTORY ####################
{history}
"""
return agent_history_prompt
@ -758,6 +798,7 @@ class Agent:
Returns:
_type_: _description_
"""
logger.info(f"Adding memory: {message}")
return self.short_memory.add(
role=self.agent_name, content=message
)
@ -770,10 +811,12 @@ class Agent:
tasks (List[str]): A list of tasks to run.
"""
try:
logger.info(f"Running concurrent tasks: {tasks}")
task_coroutines = [
self.run_async(task, **kwargs) for task in tasks
]
completed_tasks = await asyncio.gather(*task_coroutines)
logger.info(f"Completed tasks: {completed_tasks}")
return completed_tasks
except Exception as error:
print(
@ -789,6 +832,7 @@ class Agent:
def bulk_run(self, inputs: List[Dict[str, Any]]) -> List[str]:
try:
"""Generate responses for multiple input sets."""
logger.info(f"Running bulk tasks: {inputs}")
return [self.run(**input_data) for input_data in inputs]
except Exception as error:
print(colored(f"Error running bulk run: {error}", "red"))
@ -881,6 +925,7 @@ class Agent:
"""
try:
logger.info(f"Running a single step: {task}")
# Generate the response using lm
response = self.llm(task, **kwargs)
@ -960,6 +1005,7 @@ class Agent:
"""
logger.info(f"Adding response filter: {filter_word}")
self.reponse_filters.append(filter_word)
def apply_reponse_filters(self, response: str) -> str:
@ -967,6 +1013,9 @@ class Agent:
Apply the response filters to the response
"""
logger.info(
f"Applying response filters to response: {response}"
)
for word in self.response_filters:
response = response.replace(word, "[FILTERED]")
return response
@ -978,11 +1027,13 @@ class Agent:
response = agent.filtered_run("Generate a report on finance")
print(response)
"""
logger.info(f"Running filtered task: {task}")
raw_response = self.run(task)
return self.apply_response_filters(raw_response)
def interactive_run(self, max_loops: int = 5) -> None:
"""Interactive run mode"""
logger.info("Running in interactive mode")
response = input("Start the cnversation")
for i in range(max_loops):
@ -992,28 +1043,6 @@ class Agent:
# Get user input
response = input("You: ")
def streamed_generation(self, prompt: str) -> str:
"""
Stream the generation of the response
Args:
prompt (str): The prompt to use
Example:
# Feature 4: Streamed generation
response = agent.streamed_generation("Generate a report on finance")
print(response)
"""
tokens = list(prompt)
response = ""
for token in tokens:
time.sleep(0.1)
response += token
print(token, end="", flush=True)
print()
return response
def save_state(self, file_path: str) -> None:
"""
Saves the current state of the agent to a JSON file, including the llm parameters.
@ -1025,6 +1054,7 @@ class Agent:
>>> agent.save_state('saved_flow.json')
"""
try:
logger.info(f"Saving agent state to: {file_path}")
state = {
"agent_id": str(self.id),
"agent_name": self.agent_name,
@ -1045,6 +1075,7 @@ class Agent:
"autosave": self.autosave,
"saved_state_path": self.saved_state_path,
"max_loops": self.max_loops,
# "StepCache": self.step_cache,
}
with open(file_path, "w") as f:
@ -1104,54 +1135,55 @@ class Agent:
>>> agent.run("Continue with the task")
"""
with open(file_path) as f:
state = json.load(f)
# Restore other saved attributes
self.id = state.get("agent_id", self.id)
self.agent_name = state.get("agent_name", self.agent_name)
self.agent_description = state.get(
"agent_description", self.agent_description
)
self.system_prompt = state.get(
"system_prompt", self.system_prompt
)
self.sop = state.get("sop", self.sop)
self.short_memory = state.get("short_memory", [])
self.max_loops = state.get("max_loops", 5)
self.loop_interval = state.get("loop_interval", 1)
self.retry_attempts = state.get("retry_attempts", 3)
self.retry_interval = state.get("retry_interval", 1)
self.interactive = state.get("interactive", False)
print(f"Agent state loaded from {file_path}")
try:
with open(file_path) as f:
state = json.load(f)
# Restore other saved attributes
self.id = state.get("agent_id", self.id)
self.agent_name = state.get("agent_name", self.agent_name)
self.agent_description = state.get(
"agent_description", self.agent_description
)
self.system_prompt = state.get(
"system_prompt", self.system_prompt
)
self.sop = state.get("sop", self.sop)
self.short_memory = state.get("short_memory", [])
self.max_loops = state.get("max_loops", 5)
self.loop_interval = state.get("loop_interval", 1)
self.retry_attempts = state.get("retry_attempts", 3)
self.retry_interval = state.get("retry_interval", 1)
self.interactive = state.get("interactive", False)
print(f"Agent state loaded from {file_path}")
except Exception as error:
print(
colored(f"Error loading agent state: {error}", "red")
)
def retry_on_failure(
self, function, retries: int = 3, retry_delay: int = 1
self,
function: callable,
retries: int = 3,
retry_delay: int = 1,
):
"""Retry wrapper for LLM calls."""
attempt = 0
while attempt < retries:
try:
return function()
except Exception as error:
logging.error(f"Error generating response: {error}")
attempt += 1
time.sleep(retry_delay)
raise Exception("All retry attempts failed")
def generate_reply(self, history: str, **kwargs) -> str:
"""
Generate a response based on initial or task
"""
prompt = f"""
SYSTEM_PROMPT: {self.system_prompt}
History: {history}
"""
response = self.llm(prompt, **kwargs)
return {"role": self.agent_name, "content": response}
try:
logger.info(f"Retrying function: {function}")
attempt = 0
while attempt < retries:
try:
return function()
except Exception as error:
logging.error(
f"Error generating response: {error}"
)
attempt += 1
time.sleep(retry_delay)
raise Exception("All retry attempts failed")
except Exception as error:
print(colored(f"Error retrying function: {error}", "red"))
def update_system_prompt(self, system_prompt: str):
"""Upddate the system message"""
@ -1181,9 +1213,13 @@ class Agent:
"""
text -> parse_code by looking for code inside 6 backticks `````-> run_code
"""
parsed_code = extract_code_from_markdown(code)
run_code = self.code_executor.run(parsed_code)
return run_code
try:
logger.info(f"Running code: {code}")
parsed_code = extract_code_from_markdown(code)
run_code = self.code_executor.run(parsed_code)
return run_code
except Exception as error:
logger.debug(f"Error running code: {error}")
def pdf_connector(self, pdf: str = None):
"""Transforms the pdf into text
@ -1194,9 +1230,13 @@ class Agent:
Returns:
_type_: _description_
"""
pdf = pdf or self.pdf_path
text = pdf_to_text(pdf)
return text
try:
pdf = pdf or self.pdf_path
text = pdf_to_text(pdf)
return text
except Exception as error:
print(f"Error connecting to the pdf: {error}")
raise error
def pdf_chunker(self, text: str = None, num_limits: int = 1000):
"""Chunk the pdf into sentences
@ -1220,12 +1260,15 @@ class Agent:
Returns:
_type_: _description_
"""
for doc in docs:
data = data_to_text(doc)
try:
for doc in docs:
data = data_to_text(doc)
return self.short_memory.add(
role=self.user_name, content=data
)
return self.short_memory.add(
role=self.user_name, content=data
)
except Exception as error:
print(colored(f"Error ingesting docs: {error}", "red"))
def ingest_pdf(self, pdf: str):
"""Ingest the pdf into the memory
@ -1236,22 +1279,37 @@ class Agent:
Returns:
_type_: _description_
"""
text = pdf_to_text(pdf)
return self.short_memory.add(
role=self.user_name, content=text
)
try:
logger.info(f"Ingesting pdf: {pdf}")
text = pdf_to_text(pdf)
return self.short_memory.add(
role=self.user_name, content=text
)
except Exception as error:
print(colored(f"Error ingesting pdf: {error}", "red"))
def receieve_mesage(self, name: str, message: str):
"""Receieve a message"""
message = f"{name}: {message}"
return self.short_memory.add(role=name, content=message)
try:
message = f"{name}: {message}"
return self.short_memory.add(role=name, content=message)
except Exception as error:
print(colored(f"Error receiving message: {error}", "red"))
def send_agent_message(
self, agent_name: str, message: str, *args, **kwargs
):
"""Send a message to the agent"""
message = f"{agent_name}: {message}"
return self.run(message, *args, **kwargs)
try:
logger.info(f"Sending agent message: {message}")
message = f"{agent_name}: {message}"
return self.run(message, *args, **kwargs)
except Exception as error:
print(
colored(
f"Error sending agent message: {error}", "red"
)
)
def truncate_history(self):
"""
@ -1278,13 +1336,22 @@ class Agent:
def get_docs_from_doc_folders(self):
"""Get the docs from the files"""
# Get the list of files then extract them and add them to the memory
files = os.listdir(self.docs_folder)
try:
logger.info("Getting docs from doc folders")
# Get the list of files then extract them and add them to the memory
files = os.listdir(self.docs_folder)
# Extract the text from the files
for file in files:
text = data_to_text(file)
# Extract the text from the files
for file in files:
text = data_to_text(file)
return self.short_memory.add(
role=self.user_name, content=text
)
return self.short_memory.add(
role=self.user_name, content=text
)
except Exception as error:
print(
colored(
f"Error getting docs from doc folders: {error}",
"red",
)
)

@ -37,10 +37,9 @@ class LongContextSwarmLeader:
system_prompt=None,
sop=self.prompt_template_json,
*args,
**kwargs
**kwargs,
)
def prep_schema(self, task: str, *args, **kwargs):
"""
Returns a formatted string containing the metadata of all agents in the swarm.
@ -71,16 +70,15 @@ class LongContextSwarmLeader:
"""
for agent in self.agents:
prompt += f"Member Name: {agent.ai_name}\nMember ID: {agent.id}\nMember Description: {agent.description}\n\n"
prompt += (
f"Member Name: {agent.ai_name}\nMember ID:"
f" {agent.id}\nMember Description:"
f" {agent.description}\n\n"
)
return prompt
def prep_schema_second(
self,
task_description: str,
task: str
):
def prep_schema_second(self, task_description: str, task: str):
prompt = f"""
You are the leader of a team of {len(self.agents)}
members. Your team will need to collaborate to
@ -116,7 +114,6 @@ class LongContextSwarmLeader:
"""
return prompt
def run(self, task: str, *args, **kwargs):
"""
Executes the specified task using the agent's run method.
@ -137,6 +134,7 @@ class LongContextSwarmLeader:
return out
# class LongContextSwarm(BaseSwarm):
# def __init__(
# self,

@ -7,7 +7,21 @@ from typing import Any, List
from swarms.structs.agent import Agent
from swarms.structs.conversation import Conversation
from swarms.utils.logger import logger
from loguru import logger
import sys
# Configure loguru logger with advanced settings
logger.remove()
logger.add(
sys.stderr,
colorize=True,
format="<green>{time}</green> <level>{message}</level>",
backtrace=True,
diagnose=True,
enqueue=True,
catch=True,
)
def extract_last_python_code_block(text):
@ -157,11 +171,18 @@ class MajorityVoting:
time_enabled=True, *args, **kwargs
)
# # Configure logging
# self.logging.basicConfig(
# level=logging.INFO,
# format="%(asctime)s - %(levelname)s - %(message)s",
# )
# If autosave is enabled, save the conversation to a file
if self.autosave:
self.conversation.save()
# Log the agents
logger.info("Initializing majority voting system")
# Length of agents
logger.info(f"Number of agents: {len(self.agents)}")
logger.info(
"Agents:"
f" {', '.join(agent.agent_name for agent in self.agents)}"
)
def run(self, task: str, *args, **kwargs) -> List[Any]:
"""
@ -176,10 +197,11 @@ class MajorityVoting:
List[Any]: The majority vote.
"""
# Route to each agent
if self.concurrent:
with concurrent.futures.ThreadPoolExecutor() as executor:
# Log the agents
logger.info("Running agents concurrently")
futures = [
executor.submit(agent.run, task, *args)
for agent in self.agents
@ -191,6 +213,7 @@ class MajorityVoting:
)
]
elif self.multithreaded:
logger.info("Running agents using multithreading")
with concurrent.futures.ThreadPoolExecutor() as executor:
results = [
executor.submit(agent.run, task, *args)
@ -198,6 +221,7 @@ class MajorityVoting:
]
results = [future.result() for future in results]
elif self.multiprocess:
logger.info("Running agents using multiprocessing")
with Pool() as pool:
results = pool.starmap(
Agent.run,
@ -218,6 +242,8 @@ class MajorityVoting:
# Add responses to conversation and log them
for agent, response in zip(self.agents, results):
logger.info(f"[{agent.agent_id}][{response}]")
response = (
response if isinstance(response, list) else [response]
)
@ -227,6 +253,9 @@ class MajorityVoting:
# Perform majority voting on the conversation
majority_vote = majority_voting(self.conversation.responses)
# Log the majority vote
logger.info(f"Majority vote: {majority_vote}")
# If an output parser is provided, parse the output
if self.output_parser:
majority_vote = self.output_parser(

@ -20,10 +20,12 @@ class SubprocessCodeInterpreter:
Example:
"""
def __init__(self):
self.start_cmd = ""
def __init__(
self,
start_cmd: str = "",
debug_mode: bool = False,
):
self.process = None
self.debug_mode = False
self.output_queue = queue.Queue()
self.done = threading.Event()

@ -1,13 +1,9 @@
import logging
import os
import sys
import warnings
def disable_logging():
log_file = open("errors.txt", "w")
sys.stderr = log_file
warnings.filterwarnings("ignore", category=UserWarning)
# disable tensorflow warnings
@ -29,6 +25,11 @@ def disable_logging():
"numexpr",
"git",
"wandb.docker.auth",
"langchain",
"distutils",
"urllib3",
"elasticsearch",
"packaging",
]:
logger = logging.getLogger(logger_name)
logger.setLevel(logging.ERROR)

@ -0,0 +1,45 @@
from unittest.mock import MagicMock
from swarms.models.fire_function import FireFunctionCaller
def test_fire_function_caller_run(mocker):
# Create mock model and tokenizer
model = MagicMock()
tokenizer = MagicMock()
mocker.patch.object(FireFunctionCaller, "model", model)
mocker.patch.object(FireFunctionCaller, "tokenizer", tokenizer)
# Create mock task and arguments
task = "Add 2 and 3"
args = (2, 3)
kwargs = {}
# Create mock generated_ids and decoded output
generated_ids = [1, 2, 3]
decoded_output = "5"
model.generate.return_value = generated_ids
tokenizer.batch_decode.return_value = [decoded_output]
# Create FireFunctionCaller instance
fire_function_caller = FireFunctionCaller()
# Run the function
fire_function_caller.run(task, *args, **kwargs)
# Assert model.generate was called with the correct inputs
model.generate.assert_called_once_with(
tokenizer.apply_chat_template.return_value,
max_new_tokens=fire_function_caller.max_tokens,
*args,
**kwargs,
)
# Assert tokenizer.batch_decode was called with the correct inputs
tokenizer.batch_decode.assert_called_once_with(generated_ids)
# Assert the decoded output is printed
assert decoded_output in mocker.patch.object(
print, "call_args_list"
)
Loading…
Cancel
Save