extensive error habdlong

pull/11/head
Kye 2 years ago
parent de03769f8b
commit c8e07e464d

@ -9,8 +9,8 @@ from langchain.chat_models.base import BaseChatModel
from langchain.schema import BaseOutputParser from langchain.schema import BaseOutputParser
from langchain.callbacks.base import BaseCallbackManager from langchain.callbacks.base import BaseCallbackManager
from .chat_agent import ConversationalChatAgent from .ConversationalChatAgent import ConversationalChatAgent
from .llm import ChatOpenAI from .ChatOpenAI import ChatOpenAI
from .EvalOutputParser import EvalOutputParser from .EvalOutputParser import EvalOutputParser

@ -10,7 +10,7 @@ from langchain.memory.chat_memory import BaseChatMemory
from swarms.tools.main import BaseToolSet, ToolsFactory from swarms.tools.main import BaseToolSet, ToolsFactory
from .AgentBuilder import AgentBuilder from .AgentBuilder import AgentBuilder
from .callback import EVALCallbackHandler, ExecutionTracingCallbackHandler from .Calback import EVALCallbackHandler, ExecutionTracingCallbackHandler
CallbackManager.set_handler(handler=EVALCallbackHandler()) CallbackManager.set_handler(handler=EVALCallbackHandler())

@ -1,4 +1,5 @@
from typing import Any, List, Optional, Sequence, Tuple from typing import Any, List, Optional, Sequence, Tuple
import logging
from langchain.agents.agent import Agent from langchain.agents.agent import Agent
from langchain.callbacks.base import BaseCallbackManager from langchain.callbacks.base import BaseCallbackManager
@ -22,6 +23,7 @@ from langchain.tools.base import BaseTool
from swarms.prompts.prompts import EVAL_TOOL_RESPONSE from swarms.prompts.prompts import EVAL_TOOL_RESPONSE
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
class ConversationalChatAgent(Agent): class ConversationalChatAgent(Agent):
"""An agent designed to hold a conversation in addition to using tools.""" """An agent designed to hold a conversation in addition to using tools."""
@ -51,6 +53,17 @@ class ConversationalChatAgent(Agent):
output_parser: BaseOutputParser, output_parser: BaseOutputParser,
input_variables: Optional[List[str]] = None, input_variables: Optional[List[str]] = None,
) -> BasePromptTemplate: ) -> BasePromptTemplate:
if not isinstance(tools, Sequence):
raise TypeError("Tools must be a sequence")
if not isinstance(system_message, str):
raise TypeError("System message must be a string")
if not isinstance(human_message, str):
raise TypeError("Human message must be a string")
if not isinstance(output_parser, BaseOutputParser):
raise TypeError("Output parser must be an instance of BaseOutputParser")
if input_variables and not isinstance(input_variables, list):
raise TypeError("Input variables must be a list")
tool_strings = "\n".join( tool_strings = "\n".join(
[f"> {tool.name}: {tool.description}" for tool in tools] [f"> {tool.name}: {tool.description}" for tool in tools]
) )
@ -75,7 +88,8 @@ class ConversationalChatAgent(Agent):
try: try:
response = self.output_parser.parse(llm_output) response = self.output_parser.parse(llm_output)
return response["action"], response["action_input"] return response["action"], response["action_input"]
except Exception: except Exception as e:
logging.error(f"Error while extracting tool and input: {str(e)}")
raise ValueError(f"Could not parse LLM output: {llm_output}") raise ValueError(f"Could not parse LLM output: {llm_output}")
def _construct_scratchpad( def _construct_scratchpad(
@ -118,9 +132,13 @@ class ConversationalChatAgent(Agent):
callback_manager=callback_manager, callback_manager=callback_manager,
) )
tool_names = [tool.name for tool in tools] tool_names = [tool.name for tool in tools]
return cls( try:
llm_chain=llm_chain, return cls(
allowed_tools=tool_names, llm_chain=llm_chain,
output_parser=output_parser, allowed_tools=tool_names,
**kwargs, output_parser=output_parser,
) **kwargs,
)
except Exception as e:
logging.error(f"Error while creating agent from LLM and tools: {str(e)}")
raise e
Loading…
Cancel
Save