abstractswarm

pull/64/head
Kye 1 year ago
parent 917ad28b63
commit cacdc1de21

@ -11,3 +11,4 @@ from swarms.agents.omni_modal_agent import OmniModalAgent
from swarms.agents.message import Message from swarms.agents.message import Message
from swarms.agents.stream_response import stream from swarms.agents.stream_response import stream
from swarms.agents.base import AbstractAgent from swarms.agents.base import AbstractAgent
from swarms.agents.registry import Registry

@ -977,7 +977,7 @@ class ConversableAgent(Agent):
) )
elif lang in ["python", "Python"]: elif lang in ["python", "Python"]:
if code.startswith("# filename: "): if code.startswith("# filename: "):
filename = code[11 : code.find("\n")].strip() filename = code[11: code.find("\n")].strip()
else: else:
filename = None filename = None
exitcode, logs, image = self.run_code( exitcode, logs, image = self.run_code(

@ -108,7 +108,7 @@ class MetaPrompterAgent:
def get_new_instructions(self, meta_output): def get_new_instructions(self, meta_output):
"""Get New Instructions from the meta_output""" """Get New Instructions from the meta_output"""
delimiter = "Instructions: " delimiter = "Instructions: "
new_instructions = meta_output[meta_output.find(delimiter) + len(delimiter) :] new_instructions = meta_output[meta_output.find(delimiter) + len(delimiter):]
return new_instructions return new_instructions
def run(self, task: str): def run(self, task: str):

@ -38,7 +38,7 @@ def crop(image, target, region):
if "masks" in target: if "masks" in target:
# FIXME should we update the area here if there are no boxes? # FIXME should we update the area here if there are no boxes?
target["masks"] = target["masks"][:, i : i + h, j : j + w] target["masks"] = target["masks"][:, i: i + h, j: j + w]
fields.append("masks") fields.append("masks")
# remove elements for which the boxes or masks that have zero area # remove elements for which the boxes or masks that have zero area

@ -159,7 +159,7 @@ class Backbone(BackboneBase):
), "Only resnet50 and resnet101 are available." ), "Only resnet50 and resnet101 are available."
assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]] assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]]
num_channels_all = [256, 512, 1024, 2048] num_channels_all = [256, 512, 1024, 2048]
num_channels = num_channels_all[4 - len(return_interm_indices) :] num_channels = num_channels_all[4 - len(return_interm_indices):]
super().__init__(backbone, train_backbone, num_channels, return_interm_indices) super().__init__(backbone, train_backbone, num_channels, return_interm_indices)
@ -224,7 +224,7 @@ def build_backbone(args):
use_checkpoint=use_checkpoint, use_checkpoint=use_checkpoint,
) )
bb_num_channels = backbone.num_features[4 - len(return_interm_indices) :] bb_num_channels = backbone.num_features[4 - len(return_interm_indices):]
else: else:
raise NotImplementedError("Unknown backbone {}".format(args.backbone)) raise NotImplementedError("Unknown backbone {}".format(args.backbone))

@ -649,7 +649,7 @@ class SwinTransformer(nn.Module):
qk_scale=qk_scale, qk_scale=qk_scale,
drop=drop_rate, drop=drop_rate,
attn_drop=attn_drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])], drop_path=dpr[sum(depths[:i_layer]): sum(depths[: i_layer + 1])],
norm_layer=norm_layer, norm_layer=norm_layer,
# downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, # downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
downsample=downsamplelist[i_layer], downsample=downsamplelist[i_layer],

@ -221,9 +221,9 @@ def generate_masks_with_special_tokens(tokenized, special_tokens_list, tokenizer
position_ids[row, col] = 0 position_ids[row, col] = 0
else: else:
attention_mask[ attention_mask[
row, previous_col + 1 : col + 1, previous_col + 1 : col + 1 row, previous_col + 1: col + 1, previous_col + 1: col + 1
] = True ] = True
position_ids[row, previous_col + 1 : col + 1] = torch.arange( position_ids[row, previous_col + 1: col + 1] = torch.arange(
0, col - previous_col, device=input_ids.device 0, col - previous_col, device=input_ids.device
) )
@ -273,13 +273,13 @@ def generate_masks_with_special_tokens_and_transfer_map(
position_ids[row, col] = 0 position_ids[row, col] = 0
else: else:
attention_mask[ attention_mask[
row, previous_col + 1 : col + 1, previous_col + 1 : col + 1 row, previous_col + 1: col + 1, previous_col + 1: col + 1
] = True ] = True
position_ids[row, previous_col + 1 : col + 1] = torch.arange( position_ids[row, previous_col + 1: col + 1] = torch.arange(
0, col - previous_col, device=input_ids.device 0, col - previous_col, device=input_ids.device
) )
c2t_maski = torch.zeros((num_token), device=input_ids.device).bool() c2t_maski = torch.zeros((num_token), device=input_ids.device).bool()
c2t_maski[previous_col + 1 : col] = True c2t_maski[previous_col + 1: col] = True
cate_to_token_mask_list[row].append(c2t_maski) cate_to_token_mask_list[row].append(c2t_maski)
previous_col = col previous_col = col

@ -76,7 +76,7 @@ def gen_encoder_output_proposals(
proposals = [] proposals = []
_cur = 0 _cur = 0
for lvl, (H_, W_) in enumerate(spatial_shapes): for lvl, (H_, W_) in enumerate(spatial_shapes):
mask_flatten_ = memory_padding_mask[:, _cur : (_cur + H_ * W_)].view( mask_flatten_ = memory_padding_mask[:, _cur: (_cur + H_ * W_)].view(
N_, H_, W_, 1 N_, H_, W_, 1
) )
valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1) valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1)

@ -619,7 +619,7 @@ def get_phrases_from_posmap(
): ):
assert isinstance(posmap, torch.Tensor), "posmap must be torch.Tensor" assert isinstance(posmap, torch.Tensor), "posmap must be torch.Tensor"
if posmap.dim() == 1: if posmap.dim() == 1:
posmap[0 : left_idx + 1] = False posmap[0: left_idx + 1] = False
posmap[right_idx:] = False posmap[right_idx:] = False
non_zero_idx = posmap.nonzero(as_tuple=True)[0].tolist() non_zero_idx = posmap.nonzero(as_tuple=True)[0].tolist()
token_ids = [tokenized["input_ids"][i] for i in non_zero_idx] token_ids = [tokenized["input_ids"][i] for i in non_zero_idx]

@ -41,7 +41,7 @@ def create_positive_map_from_span(tokenized, token_span, max_text_len=256):
positive_map[j, beg_pos] = 1 positive_map[j, beg_pos] = 1
break break
else: else:
positive_map[j, beg_pos : end_pos + 1].fill_(1) positive_map[j, beg_pos: end_pos + 1].fill_(1)
return positive_map / (positive_map.sum(-1)[:, None] + 1e-6) return positive_map / (positive_map.sum(-1)[:, None] + 1e-6)

@ -139,7 +139,7 @@ class MaskDecoder(nn.Module):
# Run the transformer # Run the transformer
hs, src = self.transformer(src, pos_src, tokens) hs, src = self.transformer(src, pos_src, tokens)
iou_token_out = hs[:, 0, :] iou_token_out = hs[:, 0, :]
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :] mask_tokens_out = hs[:, 1: (1 + self.num_mask_tokens), :]
# Upscale mask embeddings and predict masks using the mask tokens # Upscale mask embeddings and predict masks using the mask tokens
src = src.transpose(1, 2).view(b, c, h, w) src = src.transpose(1, 2).view(b, c, h, w)

@ -101,7 +101,7 @@ def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
), "Batched iteration must have inputs of all the same size." ), "Batched iteration must have inputs of all the same size."
n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0) n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
for b in range(n_batches): for b in range(n_batches):
yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args] yield [arg[b * batch_size: (b + 1) * batch_size] for arg in args]
def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]: def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]:
@ -142,7 +142,7 @@ def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray:
idx = 0 idx = 0
parity = False parity = False
for count in rle["counts"]: for count in rle["counts"]:
mask[idx : idx + count] = parity mask[idx: idx + count] = parity
idx += count idx += count
parity ^= True parity ^= True
mask = mask.reshape(w, h) mask = mask.reshape(w, h)

@ -207,12 +207,12 @@ def blend_gt2pt(old_image, new_image, sigma=0.15, steps=100):
kernel[steps:-steps, :steps] = left kernel[steps:-steps, :steps] = left
kernel[steps:-steps, -steps:] = right kernel[steps:-steps, -steps:] = right
pt_gt_img = easy_img[pos_h : pos_h + old_size[1], pos_w : pos_w + old_size[0]] pt_gt_img = easy_img[pos_h: pos_h + old_size[1], pos_w: pos_w + old_size[0]]
gaussian_gt_img = ( gaussian_gt_img = (
kernel * gt_img_array + (1 - kernel) * pt_gt_img kernel * gt_img_array + (1 - kernel) * pt_gt_img
) # gt img with blur img ) # gt img with blur img
gaussian_gt_img = gaussian_gt_img.astype(np.int64) gaussian_gt_img = gaussian_gt_img.astype(np.int64)
easy_img[pos_h : pos_h + old_size[1], pos_w : pos_w + old_size[0]] = gaussian_gt_img easy_img[pos_h: pos_h + old_size[1], pos_w: pos_w + old_size[0]] = gaussian_gt_img
gaussian_img = Image.fromarray(easy_img) gaussian_img = Image.fromarray(easy_img)
return gaussian_img return gaussian_img

@ -317,7 +317,7 @@ def find_json(s):
s = s.replace("'", '"') s = s.replace("'", '"')
start = s.find("{") start = s.find("{")
end = s.rfind("}") end = s.rfind("}")
res = s[start : end + 1] res = s[start: end + 1]
res = res.replace("\n", "") res = res.replace("\n", "")
return res return res

@ -0,0 +1,27 @@
from typing import Dict
from pydantic import BaseModel
class Registry(BaseModel):
"""Registry for storing and building classes."""
name: str
entries: Dict = {}
def register(self, key: str):
def decorator(class_builder):
self.entries[key] = class_builder
return class_builder
return decorator
def build(self, type: str, **kwargs):
if type not in self.entries:
raise ValueError(
f'{type} is not registered. Please register with the .register("{type}") method provided in {self.name} registry'
)
return self.entries[type](**kwargs)
def get_all_entries(self):
return self.entries

@ -347,7 +347,7 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
disallowed_special=self.disallowed_special, disallowed_special=self.disallowed_special,
) )
for j in range(0, len(token), self.embedding_ctx_length): for j in range(0, len(token), self.embedding_ctx_length):
tokens.append(token[j : j + self.embedding_ctx_length]) tokens.append(token[j: j + self.embedding_ctx_length])
indices.append(i) indices.append(i)
batched_embeddings: List[List[float]] = [] batched_embeddings: List[List[float]] = []
@ -366,7 +366,7 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
for i in _iter: for i in _iter:
response = embed_with_retry( response = embed_with_retry(
self, self,
input=tokens[i : i + _chunk_size], input=tokens[i: i + _chunk_size],
**self._invocation_params, **self._invocation_params,
) )
batched_embeddings.extend(r["embedding"] for r in response["data"]) batched_embeddings.extend(r["embedding"] for r in response["data"])
@ -428,7 +428,7 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
disallowed_special=self.disallowed_special, disallowed_special=self.disallowed_special,
) )
for j in range(0, len(token), self.embedding_ctx_length): for j in range(0, len(token), self.embedding_ctx_length):
tokens.append(token[j : j + self.embedding_ctx_length]) tokens.append(token[j: j + self.embedding_ctx_length])
indices.append(i) indices.append(i)
batched_embeddings: List[List[float]] = [] batched_embeddings: List[List[float]] = []
@ -436,7 +436,7 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
for i in range(0, len(tokens), _chunk_size): for i in range(0, len(tokens), _chunk_size):
response = await async_embed_with_retry( response = await async_embed_with_retry(
self, self,
input=tokens[i : i + _chunk_size], input=tokens[i: i + _chunk_size],
**self._invocation_params, **self._invocation_params,
) )
batched_embeddings.extend(r["embedding"] for r in response["data"]) batched_embeddings.extend(r["embedding"] for r in response["data"])

@ -458,7 +458,7 @@ class BaseOpenAI(BaseLLM):
) )
params["max_tokens"] = self.max_tokens_for_prompt(prompts[0]) params["max_tokens"] = self.max_tokens_for_prompt(prompts[0])
sub_prompts = [ sub_prompts = [
prompts[i : i + self.batch_size] prompts[i: i + self.batch_size]
for i in range(0, len(prompts), self.batch_size) for i in range(0, len(prompts), self.batch_size)
] ]
return sub_prompts return sub_prompts
@ -469,7 +469,7 @@ class BaseOpenAI(BaseLLM):
"""Create the LLMResult from the choices and prompts.""" """Create the LLMResult from the choices and prompts."""
generations = [] generations = []
for i, _ in enumerate(prompts): for i, _ in enumerate(prompts):
sub_choices = choices[i * self.n : (i + 1) * self.n] sub_choices = choices[i * self.n: (i + 1) * self.n]
generations.append( generations.append(
[ [
Generation( Generation(

@ -232,4 +232,3 @@ PY_TEST_GENERATION_COMPLETION_INSTRUCTION = f"""You are an AI coding assistant t
{PY_TEST_GENERATION_FEW_SHOT}""" {PY_TEST_GENERATION_FEW_SHOT}"""
PY_TEST_GENERATION_CHAT_INSTRUCTION = """You are an AI coding assistant that can write unique, diverse, and intuitive unit tests for functions given the signature and docstring.""" PY_TEST_GENERATION_CHAT_INSTRUCTION = """You are an AI coding assistant that can write unique, diverse, and intuitive unit tests for functions given the signature and docstring."""

@ -7,6 +7,7 @@ class Task:
""" """
Task is a unit of work that can be executed by an agent Task is a unit of work that can be executed by an agent
""" """
def __init__( def __init__(
self, id: str, parents: List["Task"] = None, children: List["Task"] = None self, id: str, parents: List["Task"] = None, children: List["Task"] = None
): ):

@ -1,5 +1,6 @@
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from typing import Optional, List
from swarms.workers.base import AbstractWorker
class AbstractSwarm(ABC): class AbstractSwarm(ABC):
# TODO: Pass in abstract LLM class that can utilize Hf or Anthropic models, Move away from OPENAI # TODO: Pass in abstract LLM class that can utilize Hf or Anthropic models, Move away from OPENAI
@ -8,15 +9,52 @@ class AbstractSwarm(ABC):
# TODO: Add RLHF Data collection, ask user how the swarm is performing # TODO: Add RLHF Data collection, ask user how the swarm is performing
# TODO: Create an onboarding process if not settings are preconfigured like `from swarms import Swarm, Swarm()` => then initiate onboarding name your swarm + provide purpose + etc # TODO: Create an onboarding process if not settings are preconfigured like `from swarms import Swarm, Swarm()` => then initiate onboarding name your swarm + provide purpose + etc
def __init__(self, agents, vectorstore, tools): @abstractmethod
self.agents = agents def __init__(self, workers: List["AbstractWorker"]):
self.vectorstore = vectorstore """Initialize the swarm with workers"""
self.tools = tools pass
@abstractmethod @abstractmethod
def communicate(self): def communicate(self):
"""Communicate with the swarm through the orchestrator, protocols, and the universal communication layer"""
pass pass
@abstractmethod @abstractmethod
def run(self): def run(self):
"""Run the swarm"""
pass
@abstractmethod
def add_worker(self, worker: "AbstractWorker"):
"""Add a worker to the swarm"""
pass
@abstractmethod
def remove_worker(self, worker: "AbstractWorker"):
"""Remove a worker from the swarm"""
pass
@abstractmethod
def broadcast(self, message: str, sender: Optional["AbstractWorker"] = None):
"""Broadcast a message to all workers"""
pass
@abstractmethod
def reset(self):
"""Reset the swarm"""
pass
@abstractmethod
def plan(self, task: str):
"""Workers must individually plan using a workflow or pipeline"""
pass
@abstractmethod
def direct_message(
self,
message: str,
sender: "AbstractWorker",
recipient: "AbstractWorker",
):
"""Send a direct message to a worker"""
pass pass

@ -129,7 +129,7 @@ class WebpageQATool(BaseTool):
results = [] results = []
# TODO: Handle this with a MapReduceChain # TODO: Handle this with a MapReduceChain
for i in range(0, len(web_docs), 4): for i in range(0, len(web_docs), 4):
input_docs = web_docs[i : i + 4] input_docs = web_docs[i: i + 4]
window_result = self.qa_chain( window_result = self.qa_chain(
{"input_documents": input_docs, "question": question}, {"input_documents": input_docs, "question": question},
return_only_outputs=True, return_only_outputs=True,

@ -306,7 +306,7 @@ class WriteCommand:
@staticmethod @staticmethod
def from_str(command: str) -> "WriteCommand": def from_str(command: str) -> "WriteCommand":
filepath = command.split(WriteCommand.separator)[0] filepath = command.split(WriteCommand.separator)[0]
return WriteCommand(filepath, command[len(filepath) + 1 :]) return WriteCommand(filepath, command[len(filepath) + 1:])
class CodeWriter: class CodeWriter:
@ -433,7 +433,7 @@ class ReadCommand:
if self.start == self.end: if self.start == self.end:
code = code[self.start - 1] code = code[self.start - 1]
else: else:
code = "".join(code[self.start - 1 : self.end]) code = "".join(code[self.start - 1: self.end])
return code return code
@staticmethod @staticmethod
@ -590,9 +590,9 @@ class PatchCommand:
lines[self.start.line] = ( lines[self.start.line] = (
lines[self.start.line][: self.start.col] lines[self.start.line][: self.start.col]
+ self.content + self.content
+ lines[self.end.line][self.end.col :] + lines[self.end.line][self.end.col:]
) )
lines = lines[: self.start.line + 1] + lines[self.end.line + 1 :] lines = lines[: self.start.line + 1] + lines[self.end.line + 1:]
after = self.write_lines(lines) after = self.write_lines(lines)

@ -365,7 +365,7 @@ class FileHandler:
try: try:
if url.startswith(os.environ.get("SERVER", "http://localhost:8000")): if url.startswith(os.environ.get("SERVER", "http://localhost:8000")):
local_filepath = url[ local_filepath = url[
len(os.environ.get("SERVER", "http://localhost:8000")) + 1 : len(os.environ.get("SERVER", "http://localhost:8000")) + 1:
] ]
local_filename = Path("file") / local_filepath.split("/")[-1] local_filename = Path("file") / local_filepath.split("/")[-1]
src = self.path / local_filepath src = self.path / local_filepath

Loading…
Cancel
Save