parent
acd84efe46
commit
cd569322d3
@ -0,0 +1,331 @@
|
|||||||
|
# MultiAgentRouter Documentation
|
||||||
|
|
||||||
|
The MultiAgentRouter is a sophisticated task routing system that efficiently delegates tasks to specialized AI agents. It uses a "boss" agent to analyze incoming tasks and route them to the most appropriate specialized agent based on their capabilities and expertise.
|
||||||
|
|
||||||
|
## Table of Contents
|
||||||
|
- [Installation](#installation)
|
||||||
|
- [Key Components](#key-components)
|
||||||
|
- [Arguments](#arguments)
|
||||||
|
- [Methods](#methods)
|
||||||
|
- [Usage Examples](#usage-examples)
|
||||||
|
- [Healthcare](#healthcare-example)
|
||||||
|
- [Finance](#finance-example)
|
||||||
|
- [Legal](#legal-example)
|
||||||
|
- [Research](#research-example)
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
|
||||||
|
```bash
|
||||||
|
pip install swarms
|
||||||
|
```
|
||||||
|
|
||||||
|
## Key Components
|
||||||
|
|
||||||
|
### Arguments Table
|
||||||
|
|
||||||
|
| Argument | Type | Default | Description |
|
||||||
|
|----------|------|---------|-------------|
|
||||||
|
| name | str | "swarm-router" | Name identifier for the router instance |
|
||||||
|
| description | str | "Routes tasks..." | Description of the router's purpose |
|
||||||
|
| agents | List[Agent] | [] | List of available specialized agents |
|
||||||
|
| model | str | "gpt-4o-mini" | Base language model for the boss agent |
|
||||||
|
| temperature | float | 0.1 | Temperature parameter for model outputs |
|
||||||
|
| shared_memory_system | callable | None | Optional shared memory system |
|
||||||
|
| output_type | Literal["json", "string"] | "json" | Format of agent outputs |
|
||||||
|
| execute_task | bool | True | Whether to execute routed tasks |
|
||||||
|
|
||||||
|
### Methods Table
|
||||||
|
|
||||||
|
| Method | Arguments | Returns | Description |
|
||||||
|
|--------|-----------|---------|-------------|
|
||||||
|
| route_task | task: str | dict | Routes a single task to appropriate agent |
|
||||||
|
| batch_route | tasks: List[str] | List[dict] | Sequentially routes multiple tasks |
|
||||||
|
| concurrent_batch_route | tasks: List[str] | List[dict] | Concurrently routes multiple tasks |
|
||||||
|
| query_ragent | task: str | str | Queries the research agent |
|
||||||
|
| find_agent_in_list | agent_name: str | Optional[Agent] | Finds agent by name |
|
||||||
|
|
||||||
|
## Production Examples
|
||||||
|
|
||||||
|
### Healthcare Example
|
||||||
|
|
||||||
|
```python
|
||||||
|
from swarms import Agent, MultiAgentRouter
|
||||||
|
|
||||||
|
# Define specialized healthcare agents
|
||||||
|
agents = [
|
||||||
|
Agent(
|
||||||
|
agent_name="DiagnosisAgent",
|
||||||
|
description="Specializes in preliminary symptom analysis and diagnostic suggestions",
|
||||||
|
system_prompt="""You are a medical diagnostic assistant. Analyze symptoms and provide
|
||||||
|
evidence-based diagnostic suggestions, always noting this is for informational purposes
|
||||||
|
only and recommending professional medical consultation.""",
|
||||||
|
model_name="openai/gpt-4o"
|
||||||
|
),
|
||||||
|
Agent(
|
||||||
|
agent_name="TreatmentPlanningAgent",
|
||||||
|
description="Assists in creating treatment plans and medical documentation",
|
||||||
|
system_prompt="""You are a treatment planning assistant. Help create structured
|
||||||
|
treatment plans based on confirmed diagnoses, following medical best practices
|
||||||
|
and guidelines.""",
|
||||||
|
model_name="openai/gpt-4o"
|
||||||
|
),
|
||||||
|
Agent(
|
||||||
|
agent_name="MedicalResearchAgent",
|
||||||
|
description="Analyzes medical research papers and clinical studies",
|
||||||
|
system_prompt="""You are a medical research analyst. Analyze and summarize medical
|
||||||
|
research papers, clinical trials, and scientific studies, providing evidence-based
|
||||||
|
insights.""",
|
||||||
|
model_name="openai/gpt-4o"
|
||||||
|
)
|
||||||
|
]
|
||||||
|
|
||||||
|
# Initialize router
|
||||||
|
healthcare_router = MultiAgentRouter(
|
||||||
|
name="Healthcare-Router",
|
||||||
|
description="Routes medical and healthcare-related tasks to specialized agents",
|
||||||
|
agents=agents,
|
||||||
|
model="gpt-4o",
|
||||||
|
temperature=0.1
|
||||||
|
)
|
||||||
|
|
||||||
|
# Example usage
|
||||||
|
try:
|
||||||
|
# Process medical case
|
||||||
|
case_analysis = healthcare_router.route_task(
|
||||||
|
"""Patient presents with:
|
||||||
|
- Persistent dry cough for 3 weeks
|
||||||
|
- Mild fever (38.1°C)
|
||||||
|
- Fatigue
|
||||||
|
Analyze symptoms and suggest potential diagnoses for healthcare provider review."""
|
||||||
|
)
|
||||||
|
|
||||||
|
# Research treatment options
|
||||||
|
treatment_research = healthcare_router.route_task(
|
||||||
|
"""Find recent clinical studies on treatment efficacy for community-acquired
|
||||||
|
pneumonia in adult patients, focusing on outpatient care."""
|
||||||
|
)
|
||||||
|
|
||||||
|
# Process multiple cases concurrently
|
||||||
|
cases = [
|
||||||
|
"Case 1: Patient symptoms...",
|
||||||
|
"Case 2: Patient symptoms...",
|
||||||
|
"Case 3: Patient symptoms..."
|
||||||
|
]
|
||||||
|
concurrent_results = healthcare_router.concurrent_batch_route(cases)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error in healthcare processing: {str(e)}")
|
||||||
|
```
|
||||||
|
|
||||||
|
### Finance Example
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Define specialized finance agents
|
||||||
|
finance_agents = [
|
||||||
|
Agent(
|
||||||
|
agent_name="MarketAnalysisAgent",
|
||||||
|
description="Analyzes market trends and provides trading insights",
|
||||||
|
system_prompt="""You are a financial market analyst. Analyze market data, trends,
|
||||||
|
and indicators to provide evidence-based market insights and trading suggestions.""",
|
||||||
|
model_name="openai/gpt-4o"
|
||||||
|
),
|
||||||
|
Agent(
|
||||||
|
agent_name="RiskAssessmentAgent",
|
||||||
|
description="Evaluates financial risks and compliance requirements",
|
||||||
|
system_prompt="""You are a risk assessment specialist. Analyze financial data
|
||||||
|
and operations for potential risks, ensuring regulatory compliance and suggesting
|
||||||
|
risk mitigation strategies.""",
|
||||||
|
model_name="openai/gpt-4o"
|
||||||
|
),
|
||||||
|
Agent(
|
||||||
|
agent_name="InvestmentAgent",
|
||||||
|
description="Provides investment strategies and portfolio management",
|
||||||
|
system_prompt="""You are an investment strategy specialist. Develop and analyze
|
||||||
|
investment strategies, portfolio allocations, and provide long-term financial
|
||||||
|
planning guidance.""",
|
||||||
|
model_name="openai/gpt-4o"
|
||||||
|
)
|
||||||
|
]
|
||||||
|
|
||||||
|
# Initialize finance router
|
||||||
|
finance_router = MultiAgentRouter(
|
||||||
|
name="Finance-Router",
|
||||||
|
description="Routes financial analysis and investment tasks",
|
||||||
|
agents=finance_agents
|
||||||
|
)
|
||||||
|
|
||||||
|
# Example tasks
|
||||||
|
tasks = [
|
||||||
|
"""Analyze current market conditions for technology sector, focusing on:
|
||||||
|
- AI/ML companies
|
||||||
|
- Semiconductor manufacturers
|
||||||
|
- Cloud service providers
|
||||||
|
Provide risk assessment and investment opportunities.""",
|
||||||
|
|
||||||
|
"""Develop a diversified portfolio strategy for a conservative investor with:
|
||||||
|
- Investment horizon: 10 years
|
||||||
|
- Risk tolerance: Low to medium
|
||||||
|
- Initial investment: $500,000
|
||||||
|
- Monthly contribution: $5,000""",
|
||||||
|
|
||||||
|
"""Conduct risk assessment for a fintech startup's crypto trading platform:
|
||||||
|
- Regulatory compliance requirements
|
||||||
|
- Security measures
|
||||||
|
- Operational risks
|
||||||
|
- Market risks"""
|
||||||
|
]
|
||||||
|
|
||||||
|
# Process tasks concurrently
|
||||||
|
results = finance_router.concurrent_batch_route(tasks)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Legal Example
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Define specialized legal agents
|
||||||
|
legal_agents = [
|
||||||
|
Agent(
|
||||||
|
agent_name="ContractAnalysisAgent",
|
||||||
|
description="Analyzes legal contracts and documents",
|
||||||
|
system_prompt="""You are a legal document analyst. Review contracts and legal
|
||||||
|
documents for key terms, potential issues, and compliance requirements.""",
|
||||||
|
model_name="openai/gpt-4o"
|
||||||
|
),
|
||||||
|
Agent(
|
||||||
|
agent_name="ComplianceAgent",
|
||||||
|
description="Ensures regulatory compliance and updates",
|
||||||
|
system_prompt="""You are a legal compliance specialist. Monitor and analyze
|
||||||
|
regulatory requirements, ensuring compliance and suggesting necessary updates
|
||||||
|
to policies and procedures.""",
|
||||||
|
model_name="openai/gpt-4o"
|
||||||
|
),
|
||||||
|
Agent(
|
||||||
|
agent_name="LegalResearchAgent",
|
||||||
|
description="Conducts legal research and case analysis",
|
||||||
|
system_prompt="""You are a legal researcher. Research relevant cases, statutes,
|
||||||
|
and regulations, providing comprehensive legal analysis and citations.""",
|
||||||
|
model_name="openai/gpt-4o"
|
||||||
|
)
|
||||||
|
]
|
||||||
|
|
||||||
|
# Initialize legal router
|
||||||
|
legal_router = MultiAgentRouter(
|
||||||
|
name="Legal-Router",
|
||||||
|
description="Routes legal analysis and compliance tasks",
|
||||||
|
agents=legal_agents
|
||||||
|
)
|
||||||
|
|
||||||
|
# Example usage for legal department
|
||||||
|
contract_analysis = legal_router.route_task(
|
||||||
|
"""Review the following software licensing agreement:
|
||||||
|
[contract text]
|
||||||
|
|
||||||
|
Analyze for:
|
||||||
|
1. Key terms and conditions
|
||||||
|
2. Potential risks and liabilities
|
||||||
|
3. Compliance with current regulations
|
||||||
|
4. Suggested modifications"""
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Error Handling and Best Practices
|
||||||
|
|
||||||
|
1. Always use try-except blocks for task routing:
|
||||||
|
```python
|
||||||
|
try:
|
||||||
|
result = router.route_task(task)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Task routing failed: {str(e)}")
|
||||||
|
```
|
||||||
|
|
||||||
|
2. Monitor agent performance:
|
||||||
|
```python
|
||||||
|
if result["execution"]["execution_time"] > 5.0:
|
||||||
|
logger.warning(f"Long execution time for task: {result['task']['original']}")
|
||||||
|
```
|
||||||
|
|
||||||
|
3. Implement rate limiting for concurrent tasks:
|
||||||
|
```python
|
||||||
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
|
with ThreadPoolExecutor(max_workers=5) as executor:
|
||||||
|
results = router.concurrent_batch_route(tasks)
|
||||||
|
```
|
||||||
|
|
||||||
|
4. Regular agent validation:
|
||||||
|
```python
|
||||||
|
for agent in router.agents.values():
|
||||||
|
if not agent.validate():
|
||||||
|
logger.error(f"Agent validation failed: {agent.name}")
|
||||||
|
```
|
||||||
|
|
||||||
|
## Performance Considerations
|
||||||
|
|
||||||
|
1. Task Batching
|
||||||
|
|
||||||
|
- Group similar tasks together
|
||||||
|
|
||||||
|
- Use concurrent_batch_route for independent tasks
|
||||||
|
|
||||||
|
- Monitor memory usage with large batches
|
||||||
|
|
||||||
|
2. Model Selection
|
||||||
|
|
||||||
|
- Choose appropriate models based on task complexity
|
||||||
|
|
||||||
|
- Balance speed vs. accuracy requirements
|
||||||
|
|
||||||
|
- Consider cost implications
|
||||||
|
|
||||||
|
3. Response Caching
|
||||||
|
|
||||||
|
- Implement caching for frequently requested analyses
|
||||||
|
|
||||||
|
- Use shared memory system for repeated queries
|
||||||
|
|
||||||
|
- Regular cache invalidation for time-sensitive data
|
||||||
|
|
||||||
|
## Security Considerations
|
||||||
|
|
||||||
|
1. Data Privacy
|
||||||
|
|
||||||
|
- Implement data encryption
|
||||||
|
|
||||||
|
- Handle sensitive information appropriately
|
||||||
|
|
||||||
|
- Regular security audits
|
||||||
|
|
||||||
|
2. Access Control
|
||||||
|
|
||||||
|
- Implement role-based access
|
||||||
|
|
||||||
|
- Audit logging
|
||||||
|
|
||||||
|
- Regular permission reviews
|
||||||
|
|
||||||
|
## Monitoring and Logging
|
||||||
|
|
||||||
|
1. Performance Metrics
|
||||||
|
|
||||||
|
- Response times
|
||||||
|
|
||||||
|
- Success rates
|
||||||
|
|
||||||
|
- Error rates
|
||||||
|
|
||||||
|
- Resource utilization
|
||||||
|
|
||||||
|
2. Logging
|
||||||
|
|
||||||
|
- Use structured logging
|
||||||
|
|
||||||
|
- Implement log rotation
|
||||||
|
|
||||||
|
- Regular log analysis
|
||||||
|
|
||||||
|
3. Alerts
|
||||||
|
|
||||||
|
- Set up alerting for critical errors
|
||||||
|
|
||||||
|
- Monitor resource usage
|
||||||
|
|
||||||
|
- Track API rate limits
|
@ -0,0 +1,41 @@
|
|||||||
|
from swarms import Agent
|
||||||
|
from swarms.structs.multi_agent_orchestrator import MultiAgentRouter
|
||||||
|
|
||||||
|
# Example usage:
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Define some example agents
|
||||||
|
agents = [
|
||||||
|
Agent(
|
||||||
|
agent_name="ResearchAgent",
|
||||||
|
description="Specializes in researching topics and providing detailed, factual information",
|
||||||
|
system_prompt="You are a research specialist. Provide detailed, well-researched information about any topic, citing sources when possible.",
|
||||||
|
model_name="openai/gpt-4o",
|
||||||
|
),
|
||||||
|
Agent(
|
||||||
|
agent_name="CodeExpertAgent",
|
||||||
|
description="Expert in writing, reviewing, and explaining code across multiple programming languages",
|
||||||
|
system_prompt="You are a coding expert. Write, review, and explain code with a focus on best practices and clean code principles.",
|
||||||
|
model_name="openai/gpt-4o",
|
||||||
|
),
|
||||||
|
Agent(
|
||||||
|
agent_name="WritingAgent",
|
||||||
|
description="Skilled in creative and technical writing, content creation, and editing",
|
||||||
|
system_prompt="You are a writing specialist. Create, edit, and improve written content while maintaining appropriate tone and style.",
|
||||||
|
model_name="openai/gpt-4o",
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
# Initialize routers with different configurations
|
||||||
|
router_execute = MultiAgentRouter(agents=agents, execute_task=True)
|
||||||
|
|
||||||
|
# Example task
|
||||||
|
task = "Write a Python function to calculate fibonacci numbers"
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Process the task with execution
|
||||||
|
print("\nWith task execution:")
|
||||||
|
result_execute = router_execute.route_task(task)
|
||||||
|
print(result_execute)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error occurred: {str(e)}")
|
@ -0,0 +1,401 @@
|
|||||||
|
"""
|
||||||
|
Todo:
|
||||||
|
|
||||||
|
- Add multi-agent selection for a task and then run them automatically
|
||||||
|
- Add shared memory for large instances of agents
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import subprocess
|
||||||
|
import uuid
|
||||||
|
from datetime import UTC, datetime
|
||||||
|
from typing import List, Literal, Optional
|
||||||
|
|
||||||
|
from loguru import logger
|
||||||
|
from pydantic import BaseModel, Field
|
||||||
|
from tenacity import retry, stop_after_attempt, wait_exponential
|
||||||
|
|
||||||
|
from swarms.structs.agent import Agent
|
||||||
|
|
||||||
|
|
||||||
|
class AgentResponse(BaseModel):
|
||||||
|
"""Response from the boss agent indicating which agent should handle the task"""
|
||||||
|
|
||||||
|
selected_agent: str = Field(
|
||||||
|
description="Name of the agent selected to handle the task"
|
||||||
|
)
|
||||||
|
reasoning: str = Field(
|
||||||
|
description="Explanation for why this agent was selected"
|
||||||
|
)
|
||||||
|
modified_task: Optional[str] = Field(
|
||||||
|
None, description="Optional modified version of the task"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class OpenAIFunctionCaller:
|
||||||
|
"""
|
||||||
|
A class to interact with the OpenAI API for generating text based on a system prompt and a task.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
system_prompt: str,
|
||||||
|
api_key: str,
|
||||||
|
temperature: float,
|
||||||
|
max_tokens: int = 4000,
|
||||||
|
model_name: str = "gpt-4-0125-preview",
|
||||||
|
):
|
||||||
|
self.system_prompt = system_prompt
|
||||||
|
self.api_key = api_key
|
||||||
|
self.temperature = temperature
|
||||||
|
self.max_tokens = max_tokens
|
||||||
|
self.model_name = model_name
|
||||||
|
|
||||||
|
try:
|
||||||
|
from openai import OpenAI
|
||||||
|
except ImportError:
|
||||||
|
logger.error(
|
||||||
|
"OpenAI library not found. Please install it using 'pip install openai'"
|
||||||
|
)
|
||||||
|
subprocess.run(["pip", "install", "openai"])
|
||||||
|
raise
|
||||||
|
|
||||||
|
try:
|
||||||
|
self.client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(
|
||||||
|
f"Error initializing OpenAI client: {str(e)}"
|
||||||
|
)
|
||||||
|
raise
|
||||||
|
|
||||||
|
@retry(
|
||||||
|
stop=stop_after_attempt(3),
|
||||||
|
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||||
|
)
|
||||||
|
def get_completion(self, task: str) -> AgentResponse:
|
||||||
|
"""Get completion from OpenAI with retries"""
|
||||||
|
try:
|
||||||
|
response = self.client.chat.completions.create(
|
||||||
|
model=self.model_name,
|
||||||
|
messages=[
|
||||||
|
{"role": "system", "content": self.system_prompt},
|
||||||
|
{"role": "user", "content": task},
|
||||||
|
],
|
||||||
|
response_format={"type": "json_object"},
|
||||||
|
temperature=self.temperature,
|
||||||
|
max_tokens=self.max_tokens,
|
||||||
|
)
|
||||||
|
|
||||||
|
return AgentResponse.model_validate_json(
|
||||||
|
response.choices[0].message.content
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error getting completion: {str(e)}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
def get_agent_response(
|
||||||
|
self, system_prompt: str, task: str
|
||||||
|
) -> str:
|
||||||
|
"""Get agent response without function calling"""
|
||||||
|
try:
|
||||||
|
response = self.client.chat.completions.create(
|
||||||
|
model=self.model_name,
|
||||||
|
messages=[
|
||||||
|
{"role": "system", "content": system_prompt},
|
||||||
|
{"role": "user", "content": task},
|
||||||
|
],
|
||||||
|
temperature=self.temperature,
|
||||||
|
max_tokens=self.max_tokens,
|
||||||
|
)
|
||||||
|
|
||||||
|
return response.choices[0].message.content
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error getting agent response: {str(e)}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
|
||||||
|
class MultiAgentRouter:
|
||||||
|
"""
|
||||||
|
Routes tasks to appropriate agents based on their capabilities.
|
||||||
|
|
||||||
|
This class is responsible for managing a pool of agents and routing incoming tasks to the most suitable agent. It uses a boss agent to analyze the task and select the best agent for the job. The boss agent's decision is based on the capabilities and descriptions of the available agents.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
name (str): The name of the router.
|
||||||
|
description (str): A description of the router's purpose.
|
||||||
|
agents (dict): A dictionary of agents, where the key is the agent's name and the value is the agent object.
|
||||||
|
api_key (str): The API key for OpenAI.
|
||||||
|
output_type (str): The type of output expected from the agents. Can be either "json" or "string".
|
||||||
|
execute_task (bool): A flag indicating whether the task should be executed by the selected agent.
|
||||||
|
boss_system_prompt (str): A system prompt for the boss agent that includes information about all available agents.
|
||||||
|
function_caller (OpenAIFunctionCaller): An instance of OpenAIFunctionCaller for calling the boss agent.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
name: str = "swarm-router",
|
||||||
|
description: str = "Routes tasks to specialized agents based on their capabilities",
|
||||||
|
agents: List[Agent] = [],
|
||||||
|
model: str = "gpt-4o-mini",
|
||||||
|
temperature: float = 0.1,
|
||||||
|
shared_memory_system: callable = None,
|
||||||
|
output_type: Literal["json", "string"] = "json",
|
||||||
|
execute_task: bool = True,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Initializes the MultiAgentRouter with a list of agents and configuration options.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
name (str, optional): The name of the router. Defaults to "swarm-router".
|
||||||
|
description (str, optional): A description of the router's purpose. Defaults to "Routes tasks to specialized agents based on their capabilities".
|
||||||
|
agents (List[Agent], optional): A list of agents to be managed by the router. Defaults to an empty list.
|
||||||
|
model (str, optional): The model to use for the boss agent. Defaults to "gpt-4-0125-preview".
|
||||||
|
temperature (float, optional): The temperature for the boss agent's model. Defaults to 0.1.
|
||||||
|
output_type (Literal["json", "string"], optional): The type of output expected from the agents. Defaults to "json".
|
||||||
|
execute_task (bool, optional): A flag indicating whether the task should be executed by the selected agent. Defaults to True.
|
||||||
|
"""
|
||||||
|
self.name = name
|
||||||
|
self.description = description
|
||||||
|
self.shared_memory_system = shared_memory_system
|
||||||
|
self.agents = {agent.name: agent for agent in agents}
|
||||||
|
self.api_key = os.getenv("OPENAI_API_KEY")
|
||||||
|
if not self.api_key:
|
||||||
|
raise ValueError("OpenAI API key must be provided")
|
||||||
|
|
||||||
|
self.output_type = output_type
|
||||||
|
self.execute_task = execute_task
|
||||||
|
self.boss_system_prompt = self._create_boss_system_prompt()
|
||||||
|
|
||||||
|
# Initialize the function caller
|
||||||
|
self.function_caller = OpenAIFunctionCaller(
|
||||||
|
system_prompt=self.boss_system_prompt,
|
||||||
|
api_key=self.api_key,
|
||||||
|
temperature=temperature,
|
||||||
|
)
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
return f"MultiAgentRouter(name={self.name}, agents={list(self.agents.keys())})"
|
||||||
|
|
||||||
|
def query_ragent(self, task: str) -> str:
|
||||||
|
"""Query the ResearchAgent"""
|
||||||
|
return self.shared_memory_system.query(task)
|
||||||
|
|
||||||
|
def _create_boss_system_prompt(self) -> str:
|
||||||
|
"""
|
||||||
|
Creates a system prompt for the boss agent that includes information about all available agents.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: The system prompt for the boss agent.
|
||||||
|
"""
|
||||||
|
agent_descriptions = "\n".join(
|
||||||
|
[
|
||||||
|
f"- {name}: {agent.description}"
|
||||||
|
for name, agent in self.agents.items()
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
return f"""You are a boss agent responsible for routing tasks to the most appropriate specialized agent.
|
||||||
|
Available agents:
|
||||||
|
{agent_descriptions}
|
||||||
|
|
||||||
|
Your job is to:
|
||||||
|
1. Analyze the incoming task
|
||||||
|
2. Select the most appropriate agent based on their descriptions
|
||||||
|
3. Provide clear reasoning for your selection
|
||||||
|
4. Optionally modify the task to better suit the selected agent's capabilities
|
||||||
|
|
||||||
|
You must respond with JSON that contains:
|
||||||
|
- selected_agent: Name of the chosen agent (must be one of the available agents)
|
||||||
|
- reasoning: Brief explanation of why this agent was selected
|
||||||
|
- modified_task: (Optional) A modified version of the task if needed
|
||||||
|
|
||||||
|
Always select exactly one agent that best matches the task requirements.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def find_agent_in_list(self, agent_name: str) -> Optional[Agent]:
|
||||||
|
"""
|
||||||
|
Find an agent by name in a list of agents.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
agent_name (str): The name of the agent to find.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Optional[Agent]: The agent object if found, otherwise None.
|
||||||
|
"""
|
||||||
|
for agent in self.agent_list:
|
||||||
|
if agent.name == agent_name:
|
||||||
|
return agent
|
||||||
|
return None
|
||||||
|
|
||||||
|
def route_task(self, task: str) -> dict:
|
||||||
|
"""
|
||||||
|
Routes a task to the appropriate agent and returns their response.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task (str): The task to be routed.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
dict: A dictionary containing the routing result, including the selected agent, reasoning, and response.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
start_time = datetime.now(UTC)
|
||||||
|
|
||||||
|
# Get boss decision using function calling
|
||||||
|
boss_response = self.function_caller.get_completion(task)
|
||||||
|
|
||||||
|
# Validate that the selected agent exists
|
||||||
|
if boss_response.selected_agent not in self.agents:
|
||||||
|
raise ValueError(
|
||||||
|
f"Boss selected unknown agent: {boss_response.selected_agent}"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Get the selected agent
|
||||||
|
selected_agent = self.agents[boss_response.selected_agent]
|
||||||
|
|
||||||
|
# Use the modified task if provided, otherwise use original task
|
||||||
|
final_task = boss_response.modified_task or task
|
||||||
|
|
||||||
|
# Execute the task with the selected agent if enabled
|
||||||
|
execution_start = datetime.now(UTC)
|
||||||
|
agent_response = None
|
||||||
|
execution_time = 0
|
||||||
|
|
||||||
|
if self.execute_task:
|
||||||
|
# Use the agent's run method directly
|
||||||
|
agent_response = selected_agent.run(final_task)
|
||||||
|
execution_time = (
|
||||||
|
datetime.now(UTC) - execution_start
|
||||||
|
).total_seconds()
|
||||||
|
else:
|
||||||
|
logger.info(
|
||||||
|
"Task execution skipped (execute_task=False)"
|
||||||
|
)
|
||||||
|
|
||||||
|
total_time = (
|
||||||
|
datetime.now(UTC) - start_time
|
||||||
|
).total_seconds()
|
||||||
|
|
||||||
|
result = {
|
||||||
|
"id": str(uuid.uuid4()),
|
||||||
|
"timestamp": datetime.now(UTC).isoformat(),
|
||||||
|
"task": {
|
||||||
|
"original": task,
|
||||||
|
"modified": (
|
||||||
|
final_task
|
||||||
|
if boss_response.modified_task
|
||||||
|
else None
|
||||||
|
),
|
||||||
|
},
|
||||||
|
"boss_decision": {
|
||||||
|
"selected_agent": boss_response.selected_agent,
|
||||||
|
"reasoning": boss_response.reasoning,
|
||||||
|
},
|
||||||
|
"execution": {
|
||||||
|
"agent_name": selected_agent.name,
|
||||||
|
"agent_id": selected_agent.id,
|
||||||
|
"was_executed": self.execute_task,
|
||||||
|
"response": (
|
||||||
|
agent_response if self.execute_task else None
|
||||||
|
),
|
||||||
|
"execution_time": (
|
||||||
|
execution_time if self.execute_task else None
|
||||||
|
),
|
||||||
|
},
|
||||||
|
"total_time": total_time,
|
||||||
|
}
|
||||||
|
|
||||||
|
logger.info(
|
||||||
|
f"Successfully routed task to {selected_agent.name}"
|
||||||
|
)
|
||||||
|
return result
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error routing task: {str(e)}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
def batch_route(self, tasks: List[str] = []):
|
||||||
|
"""Batch route tasks to the appropriate agents"""
|
||||||
|
results = []
|
||||||
|
for task in tasks:
|
||||||
|
try:
|
||||||
|
result = self.route_task(task)
|
||||||
|
results.append(result)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error routing task: {str(e)}")
|
||||||
|
return results
|
||||||
|
|
||||||
|
def concurrent_batch_route(self, tasks: List[str] = []):
|
||||||
|
"""Concurrently route tasks to the appropriate agents"""
|
||||||
|
import concurrent.futures
|
||||||
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
|
|
||||||
|
results = []
|
||||||
|
with ThreadPoolExecutor() as executor:
|
||||||
|
futures = [
|
||||||
|
executor.submit(self.route_task, task)
|
||||||
|
for task in tasks
|
||||||
|
]
|
||||||
|
for future in concurrent.futures.as_completed(futures):
|
||||||
|
try:
|
||||||
|
result = future.result()
|
||||||
|
results.append(result)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error routing task: {str(e)}")
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
# # Example usage:
|
||||||
|
# if __name__ == "__main__":
|
||||||
|
# # Define some example agents
|
||||||
|
# agents = [
|
||||||
|
# Agent(
|
||||||
|
# agent_name="ResearchAgent",
|
||||||
|
# description="Specializes in researching topics and providing detailed, factual information",
|
||||||
|
# system_prompt="You are a research specialist. Provide detailed, well-researched information about any topic, citing sources when possible.",
|
||||||
|
# model_name="openai/gpt-4o",
|
||||||
|
# ),
|
||||||
|
# Agent(
|
||||||
|
# agent_name="CodeExpertAgent",
|
||||||
|
# description="Expert in writing, reviewing, and explaining code across multiple programming languages",
|
||||||
|
# system_prompt="You are a coding expert. Write, review, and explain code with a focus on best practices and clean code principles.",
|
||||||
|
# model_name="openai/gpt-4o",
|
||||||
|
# ),
|
||||||
|
# Agent(
|
||||||
|
# agent_name="WritingAgent",
|
||||||
|
# description="Skilled in creative and technical writing, content creation, and editing",
|
||||||
|
# system_prompt="You are a writing specialist. Create, edit, and improve written content while maintaining appropriate tone and style.",
|
||||||
|
# model_name="openai/gpt-4o",
|
||||||
|
# ),
|
||||||
|
# ]
|
||||||
|
|
||||||
|
# # Initialize routers with different configurations
|
||||||
|
# router_execute = MultiAgentRouter(agents=agents, execute_task=True)
|
||||||
|
# # router_no_execute = MultiAgentRouter(agents=agents, execute_task=False)
|
||||||
|
|
||||||
|
# # Example task
|
||||||
|
# task = "Write a Python function to calculate fibonacci numbers"
|
||||||
|
|
||||||
|
# try:
|
||||||
|
# # Process the task with execution
|
||||||
|
# print("\nWith task execution:")
|
||||||
|
# result_execute = router_execute.route_task(task)
|
||||||
|
# print(
|
||||||
|
# f"Selected Agent: {result_execute['boss_decision']['selected_agent']}"
|
||||||
|
# )
|
||||||
|
# print(
|
||||||
|
# f"Reasoning: {result_execute['boss_decision']['reasoning']}"
|
||||||
|
# )
|
||||||
|
# if result_execute["execution"]["response"]:
|
||||||
|
# print(
|
||||||
|
# f"Response Preview: {result_execute['execution']['response'][:200]}..."
|
||||||
|
# )
|
||||||
|
# print(
|
||||||
|
# f"Execution Time: {result_execute['execution']['execution_time']:.2f}s"
|
||||||
|
# )
|
||||||
|
# print(f"Total Time: {result_execute['total_time']:.2f}s")
|
||||||
|
|
||||||
|
# except Exception as e:
|
||||||
|
# print(f"Error occurred: {str(e)}")
|
@ -0,0 +1,23 @@
|
|||||||
|
import time
|
||||||
|
from typing import List
|
||||||
|
import uuid
|
||||||
|
from pydantic import BaseModel, Field
|
||||||
|
|
||||||
|
|
||||||
|
class AgentResponde(BaseModel):
|
||||||
|
id: str = Field(default=uuid.uuid4().hex)
|
||||||
|
timestamp: str = Field(default=time.time())
|
||||||
|
agent_position: int = Field(description="Agent in swarm position")
|
||||||
|
agent_name: str
|
||||||
|
agent_response: str = Field(description="Agent response")
|
||||||
|
|
||||||
|
|
||||||
|
class SwarmOutput(BaseModel):
|
||||||
|
id: str = Field(default=uuid.uuid4().hex)
|
||||||
|
timestamp: str = Field(default=time.time())
|
||||||
|
name: str = Field(description="Swarm name")
|
||||||
|
description: str = Field(description="Swarm description")
|
||||||
|
swarm_type: str = Field(description="Swarm type")
|
||||||
|
agent_outputs: List[AgentResponde] = Field(
|
||||||
|
description="List of agent responses"
|
||||||
|
)
|
@ -0,0 +1,219 @@
|
|||||||
|
import os
|
||||||
|
from swarms.structs.agent import Agent
|
||||||
|
from swarms.structs.multi_agent_orchestrator import MultiAgentRouter
|
||||||
|
|
||||||
|
|
||||||
|
def create_test_agent(name: str) -> Agent:
|
||||||
|
"""Helper function to create a test agent"""
|
||||||
|
return Agent(
|
||||||
|
agent_name=name,
|
||||||
|
description=f"Test {name}",
|
||||||
|
system_prompt=f"You are a {name}",
|
||||||
|
model_name="openai/gpt-4o",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def test_boss_router_initialization():
|
||||||
|
"""Test MultiAgentRouter initialization"""
|
||||||
|
print("\nTesting MultiAgentRouter initialization...")
|
||||||
|
|
||||||
|
# Test successful initialization
|
||||||
|
try:
|
||||||
|
agents = [
|
||||||
|
create_test_agent("TestAgent1"),
|
||||||
|
create_test_agent("TestAgent2"),
|
||||||
|
]
|
||||||
|
router = MultiAgentRouter(agents=agents)
|
||||||
|
assert (
|
||||||
|
router.name == "swarm-router"
|
||||||
|
), "Default name should be 'swarm-router'"
|
||||||
|
assert len(router.agents) == 2, "Should have 2 agents"
|
||||||
|
print("✓ Basic initialization successful")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"✗ Basic initialization failed: {str(e)}")
|
||||||
|
|
||||||
|
# Test initialization without API key
|
||||||
|
try:
|
||||||
|
temp_key = os.getenv("OPENAI_API_KEY")
|
||||||
|
os.environ["OPENAI_API_KEY"] = ""
|
||||||
|
success = False
|
||||||
|
try:
|
||||||
|
router = MultiAgentRouter(agents=[])
|
||||||
|
except ValueError as e:
|
||||||
|
success = str(e) == "OpenAI API key must be provided"
|
||||||
|
os.environ["OPENAI_API_KEY"] = temp_key
|
||||||
|
assert (
|
||||||
|
success
|
||||||
|
), "Should raise ValueError when API key is missing"
|
||||||
|
print("✓ API key validation successful")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"✗ API key validation failed: {str(e)}")
|
||||||
|
|
||||||
|
|
||||||
|
def test_boss_system_prompt():
|
||||||
|
"""Test system prompt generation"""
|
||||||
|
print("\nTesting system prompt generation...")
|
||||||
|
|
||||||
|
try:
|
||||||
|
agents = [
|
||||||
|
create_test_agent("Agent1"),
|
||||||
|
create_test_agent("Agent2"),
|
||||||
|
]
|
||||||
|
router = MultiAgentRouter(agents=agents)
|
||||||
|
prompt = router._create_boss_system_prompt()
|
||||||
|
|
||||||
|
# Check if prompt contains agent information
|
||||||
|
assert (
|
||||||
|
"Agent1" in prompt
|
||||||
|
), "Prompt should contain first agent name"
|
||||||
|
assert (
|
||||||
|
"Agent2" in prompt
|
||||||
|
), "Prompt should contain second agent name"
|
||||||
|
assert (
|
||||||
|
"You are a boss agent" in prompt
|
||||||
|
), "Prompt should contain boss agent description"
|
||||||
|
print("✓ System prompt generation successful")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"✗ System prompt generation failed: {str(e)}")
|
||||||
|
|
||||||
|
|
||||||
|
def test_find_agent_in_list():
|
||||||
|
"""Test agent finding functionality"""
|
||||||
|
print("\nTesting agent finding functionality...")
|
||||||
|
|
||||||
|
try:
|
||||||
|
agent1 = create_test_agent("Agent1")
|
||||||
|
agent2 = create_test_agent("Agent2")
|
||||||
|
router = MultiAgentRouter(agents=[agent1, agent2])
|
||||||
|
|
||||||
|
# Test finding existing agent
|
||||||
|
assert "Agent1" in router.agents, "Should find existing agent"
|
||||||
|
assert (
|
||||||
|
"NonexistentAgent" not in router.agents
|
||||||
|
), "Should not find nonexistent agent"
|
||||||
|
print("✓ Agent finding successful")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"✗ Agent finding failed: {str(e)}")
|
||||||
|
|
||||||
|
|
||||||
|
def test_task_routing():
|
||||||
|
"""Test task routing functionality"""
|
||||||
|
print("\nTesting task routing...")
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Create test agents
|
||||||
|
agents = [
|
||||||
|
create_test_agent("CodeAgent"),
|
||||||
|
create_test_agent("WritingAgent"),
|
||||||
|
]
|
||||||
|
router = MultiAgentRouter(agents=agents)
|
||||||
|
|
||||||
|
# Test routing a coding task
|
||||||
|
result = router.route_task(
|
||||||
|
"Write a Python function to sort a list"
|
||||||
|
)
|
||||||
|
assert result["boss_decision"]["selected_agent"] in [
|
||||||
|
"CodeAgent",
|
||||||
|
"WritingAgent",
|
||||||
|
], "Should select an appropriate agent"
|
||||||
|
assert (
|
||||||
|
"execution" in result
|
||||||
|
), "Result should contain execution details"
|
||||||
|
assert (
|
||||||
|
"total_time" in result
|
||||||
|
), "Result should contain timing information"
|
||||||
|
print("✓ Task routing successful")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"✗ Task routing failed: {str(e)}")
|
||||||
|
|
||||||
|
|
||||||
|
def test_batch_routing():
|
||||||
|
"""Test batch routing functionality"""
|
||||||
|
print("\nTesting batch routing...")
|
||||||
|
|
||||||
|
try:
|
||||||
|
agents = [create_test_agent("TestAgent")]
|
||||||
|
router = MultiAgentRouter(agents=agents)
|
||||||
|
|
||||||
|
tasks = ["Task 1", "Task 2", "Task 3"]
|
||||||
|
|
||||||
|
# Test sequential batch routing
|
||||||
|
results = router.batch_route(tasks)
|
||||||
|
assert len(results) == len(
|
||||||
|
tasks
|
||||||
|
), "Should return result for each task"
|
||||||
|
print("✓ Sequential batch routing successful")
|
||||||
|
|
||||||
|
# Test concurrent batch routing
|
||||||
|
concurrent_results = router.concurrent_batch_route(tasks)
|
||||||
|
assert len(concurrent_results) == len(
|
||||||
|
tasks
|
||||||
|
), "Should return result for each task"
|
||||||
|
print("✓ Concurrent batch routing successful")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"✗ Batch routing failed: {str(e)}")
|
||||||
|
|
||||||
|
|
||||||
|
def test_error_handling():
|
||||||
|
"""Test error handling in various scenarios"""
|
||||||
|
print("\nTesting error handling...")
|
||||||
|
|
||||||
|
try:
|
||||||
|
router = MultiAgentRouter(agents=[])
|
||||||
|
|
||||||
|
# Test routing with no agents
|
||||||
|
success = False
|
||||||
|
try:
|
||||||
|
router.route_task("Test task")
|
||||||
|
except Exception:
|
||||||
|
success = True
|
||||||
|
assert success, "Should handle routing with no agents"
|
||||||
|
print("✓ Empty agent list handling successful")
|
||||||
|
|
||||||
|
# Test with invalid task
|
||||||
|
success = False
|
||||||
|
router = MultiAgentRouter(
|
||||||
|
agents=[create_test_agent("TestAgent")]
|
||||||
|
)
|
||||||
|
try:
|
||||||
|
router.route_task("")
|
||||||
|
except ValueError:
|
||||||
|
success = True
|
||||||
|
assert success, "Should handle empty task"
|
||||||
|
print("✓ Invalid task handling successful")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"✗ Error handling failed: {str(e)}")
|
||||||
|
|
||||||
|
|
||||||
|
def run_all_tests():
|
||||||
|
"""Run all test functions"""
|
||||||
|
print("Starting MultiAgentRouter tests...")
|
||||||
|
|
||||||
|
test_functions = [
|
||||||
|
test_boss_router_initialization,
|
||||||
|
test_boss_system_prompt,
|
||||||
|
test_find_agent_in_list,
|
||||||
|
test_task_routing,
|
||||||
|
test_batch_routing,
|
||||||
|
test_error_handling,
|
||||||
|
]
|
||||||
|
|
||||||
|
total_tests = len(test_functions)
|
||||||
|
passed_tests = 0
|
||||||
|
|
||||||
|
for test_func in test_functions:
|
||||||
|
try:
|
||||||
|
test_func()
|
||||||
|
passed_tests += 1
|
||||||
|
except Exception as e:
|
||||||
|
print(
|
||||||
|
f"Test {test_func.__name__} failed with error: {str(e)}"
|
||||||
|
)
|
||||||
|
|
||||||
|
print(
|
||||||
|
f"\nTest Results: {passed_tests}/{total_tests} tests passed"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
run_all_tests()
|
Loading…
Reference in new issue