pull/30/head
Kye 2 years ago
parent 000ae415e1
commit cf04413a01

@ -1,191 +0,0 @@
#base toolset
from swarms.agents.tools.agent_tools import *
from swarms.utils.logger import logger
from langchain.tools import BaseTool
from typing import List, Any, Optional
from langchain.memory.chat_message_histories import FileChatMessageHistory
import logging
from swarms.agents.models.hf import HuggingFaceLLM
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
class AgentNodeInitializer:
"""Useful for spawning autonomous agent instances to accomplish complex tasks."""
def __init__(self,
llm: Optional[Any] = None,
tools: Optional[List[BaseTool]] = None,
vectorstore: Optional[List[Any]] = None,
temperature: float = 0.5,
model_type: Optional[str] = None,
human_in_the_loop: bool = True,
model_id: Optional[str] = None,
embedding_size: int = 8192,
system_prompt: Optional[str] = None,
max_iterations: Optional[int] = None,
agent_name: Optional[str] = None,
agent_role: Optional[str] = None,
verbose: bool = False,
openai_api_key: Optional[str] = None):
if not openai_api_key and (model_type is None or model_type.lower() == 'openai'):
raise ValueError("OpenAI API key cannot be None when model_type is 'openai'")
self.llm = llm or self.initialize_llm(model_type, model_id, openai_api_key, temperature)
self.tools = tools or []
self.vectorstore = vectorstore or []
self.temperature = temperature
self.model_type = model_type
self.human_in_the_loop = human_in_the_loop
self.model_id = model_id
self.embedding_size = embedding_size
self.system_prompt = system_prompt
self.agent_name = agent_name
self.agent_role = agent_role
self.verbose = verbose
self.openai_api_key = openai_api_key
self.agent = None
self.initialize_agent()
def initialize_llm(self, model_type: str, model_id: str, openai_api_key: str, temperature: float):
try:
if model_type.lower() == 'openai':
return ChatOpenAI(openai_api_key=openai_api_key, temperature=temperature)
elif model_type.lower() == 'huggingface':
return HuggingFaceLLM(model_id=model_id, temperature=temperature)
else:
raise ValueError("Invalid model_type. It should be either 'openai' or 'huggingface'")
except Exception as e:
logger.error(f"Failed to initialize language model: {e}")
raise e
def initialize_agent(self):
try:
self.agent = AutoGPT.from_llm_and_tools(
ai_name=self.agent_name,
ai_role=self.agent_role,
tools=self.tools,
llm=self.llm,
memory=self.vectorstore.as_retriever(search_kwargs={}),
human_in_the_loop=self.human_in_the_loop,
chat_history_memory=FileChatMessageHistory("chat_history.txt"),
verbose=self.verbose,
)
except Exception as e:
logger.error(f"Error while creating agent: {str(e)}")
raise e
def add_tool(self, tool: BaseTool):
if not isinstance(tool, BaseTool):
logger.error("Tool must be an instance of BaseTool.")
raise TypeError("Tool must be an instance of BaseTool.")
self.tools.append(tool)
def run(self, prompt: str) -> str:
if not prompt:
logger.error("Prompt is empty.")
raise ValueError("Prompt is empty.")
try:
self.agent.run([f"{prompt}"])
return "Task completed by AgentNode"
except Exception as e:
logger.error(f"While running the agent: {str(e)}")
raise e
class AgentNode:
def __init__(self, openai_api_key):
if not openai_api_key:
logging.error("OpenAI API key is not provided")
raise ValueError("openai_api_key cannot be None")
self.openai_api_key = openai_api_key
def initialize_llm(self, llm_class):
"""
Init LLM
Params:
llm_class(class): The Language model class. Default is OpenAI.
temperature (float): The Temperature for the language model. Default is 0.5
"""
try:
# Initialize language model
if self.llm_class == 'openai' or OpenAI:
return llm_class(openai_api_key=self.openai_api_key, temperature=self.temperature)
elif self.model_type == "huggingface":
return HuggingFaceLLM(model_id=self.model_id, temperature=self.temperature)
except Exception as e:
logging.error(f"Failed to initialize language model: {e}")
def initialize_tools(self, llm_class):
if not llm_class:
logging.error("llm_class not cannot be none")
raise ValueError("llm_class cannot be none")
try:
logging.info('Creating AgentNode')
llm = self.initialize_llm(llm_class)
web_search = DuckDuckGoSearchRun()
tools = [
web_search,
WriteFileTool(root_dir=ROOT_DIR),
ReadFileTool(root_dir=ROOT_DIR),
process_csv,
WebpageQATool(qa_chain=load_qa_with_sources_chain(llm)),
]
if not tools:
logging.error("Tools are not initialized")
raise ValueError("Tools are not initialized")
return tools
except Exception as e:
logging.error(f"Failed to initialize tools: {e}")
def initialize_vectorstore(self):
try:
embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key)
index = faiss.IndexFlatL2(self.embedding_size)
return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})
except Exception as e:
logging.error(f"Failed to initialize vector store: {e}")
raise
def create_agent(self, llm_class=ChatOpenAI, ai_name="Swarm Agent AI Assistant", ai_role="Assistant", human_in_the_loop=False, search_kwargs={}, verbose=False):
if not llm_class:
logging.error("llm_class cannot be None.")
raise ValueError("llm_class cannot be None.")
try:
agent_tools = self.initialize_tools(llm_class)
vectorstore = self.initialize_vectorstore()
agent = AgentNode(llm=self.initialize_llm(llm_class), tools=agent_tools, vectorstore=vectorstore)
agent.create_agent(ai_name=ai_name, ai_role=ai_role, human_in_the_loop=human_in_the_loop, search_kwargs=search_kwargs, verbose=verbose)
return agent
except Exception as e:
logging.error(f"Failed to create agent node: {e}")
raise
def agent(openai_api_key, objective):
if not objective or not isinstance(objective, str):
logging.error("Invalid objective")
raise ValueError("A valid objective is required")
if not openai_api_key:
logging.error("OpenAI API key is not provided")
raise ValueError("OpenAI API key is required")
try:
initializer = AgentNodeInitializer(openai_api_key)
agent = initializer.create_agent()
agent = agent.run(objective)
return agent
except Exception as e:
logging.error(f"An error occured in agent: {e}")
raise

@ -55,7 +55,7 @@ class HierarchicalSwarm:
self.human_in_the_loop = human_in_the_loop
self.embedding_size = embedding_size
self.boss_prompt = boss_prompt
self.worker_prompt = worker_prompt
# self.worker_prompt = worker_prompt
self.temperature = temperature
self.max_iterations = max_iterations
self.logging_enabled = logging_enabled
@ -66,7 +66,7 @@ class HierarchicalSwarm:
# use_vectorstore=self.use_vectorstore,
# embedding_size=self.embedding_size,
worker_name=self.worker_name,
worker_prompt=self.worker_prompt,
# worker_prompt=self.worker_prompt,
temperature=self.temperature,
human_in_the_loop=self.human_in_the_loop,
verbose=self.verbose

@ -118,7 +118,7 @@ class WorkerNodeInitializer:
raise e
class WorkerNode:
def __init__(self, openai_api_key, worker_name, worker_role):
def __init__(self, openai_api_key, worker_name, worker_role, worker_prompt):
if not openai_api_key:
logging.error("OpenAI API key is not provided")
raise ValueError("openai_api_key cannot be None")

Loading…
Cancel
Save