parent
b207a87961
commit
cf510a7198
@ -0,0 +1,437 @@
|
||||
"""
|
||||
Board of Directors Example
|
||||
|
||||
This example demonstrates how to use the Board of Directors swarm feature
|
||||
in the Swarms Framework. It shows how to create a board, configure it,
|
||||
and use it to orchestrate tasks across multiple agents.
|
||||
|
||||
The example includes:
|
||||
1. Basic Board of Directors setup and usage
|
||||
2. Custom board member configuration
|
||||
3. Task execution and feedback
|
||||
4. Configuration management
|
||||
"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
from typing import List, Optional
|
||||
|
||||
# Add the parent directory to the path to import swarms
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))))
|
||||
|
||||
from swarms.structs.board_of_directors_swarm import (
|
||||
BoardOfDirectorsSwarm,
|
||||
BoardMember,
|
||||
BoardMemberRole,
|
||||
)
|
||||
from swarms.structs.agent import Agent
|
||||
from swarms.config.board_config import (
|
||||
enable_board_feature,
|
||||
disable_board_feature,
|
||||
is_board_feature_enabled,
|
||||
create_default_config_file,
|
||||
set_board_size,
|
||||
set_decision_threshold,
|
||||
set_board_model,
|
||||
enable_verbose_logging,
|
||||
disable_verbose_logging,
|
||||
)
|
||||
|
||||
|
||||
def enable_board_directors_feature() -> None:
|
||||
"""
|
||||
Enable the Board of Directors feature.
|
||||
|
||||
This function demonstrates how to enable the Board of Directors feature
|
||||
globally and create a default configuration file.
|
||||
"""
|
||||
print("🔧 Enabling Board of Directors feature...")
|
||||
|
||||
try:
|
||||
# Create a default configuration file
|
||||
create_default_config_file("swarms_board_config.yaml")
|
||||
|
||||
# Enable the feature
|
||||
enable_board_feature("swarms_board_config.yaml")
|
||||
|
||||
# Configure some default settings
|
||||
set_board_size(3)
|
||||
set_decision_threshold(0.6)
|
||||
set_board_model("gpt-4o-mini")
|
||||
enable_verbose_logging("swarms_board_config.yaml")
|
||||
|
||||
print("✅ Board of Directors feature enabled successfully!")
|
||||
print("📁 Configuration file created: swarms_board_config.yaml")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Failed to enable Board of Directors feature: {e}")
|
||||
raise
|
||||
|
||||
|
||||
def create_custom_board_members() -> List[BoardMember]:
|
||||
"""
|
||||
Create custom board members with specific roles and expertise.
|
||||
|
||||
This function demonstrates how to create a custom board with
|
||||
specialized roles and expertise areas.
|
||||
|
||||
Returns:
|
||||
List[BoardMember]: List of custom board members
|
||||
"""
|
||||
print("👥 Creating custom board members...")
|
||||
|
||||
# Create specialized board members
|
||||
chairman = Agent(
|
||||
agent_name="Executive_Chairman",
|
||||
agent_description="Executive Chairman with strategic vision and leadership expertise",
|
||||
model_name="gpt-4o-mini",
|
||||
max_loops=1,
|
||||
system_prompt="""You are the Executive Chairman of the Board. Your role is to:
|
||||
1. Provide strategic leadership and vision
|
||||
2. Facilitate high-level decision-making
|
||||
3. Ensure board effectiveness and governance
|
||||
4. Represent the organization's interests
|
||||
5. Guide long-term strategic planning
|
||||
|
||||
You should be visionary, strategic, and focused on organizational success.""",
|
||||
)
|
||||
|
||||
cto = Agent(
|
||||
agent_name="CTO",
|
||||
agent_description="Chief Technology Officer with deep technical expertise",
|
||||
model_name="gpt-4o-mini",
|
||||
max_loops=1,
|
||||
system_prompt="""You are the Chief Technology Officer. Your role is to:
|
||||
1. Provide technical leadership and strategy
|
||||
2. Evaluate technology solutions and architectures
|
||||
3. Ensure technical feasibility of proposed solutions
|
||||
4. Guide technology-related decisions
|
||||
5. Maintain technical standards and best practices
|
||||
|
||||
You should be technically proficient, innovative, and focused on technical excellence.""",
|
||||
)
|
||||
|
||||
cfo = Agent(
|
||||
agent_name="CFO",
|
||||
agent_description="Chief Financial Officer with financial and risk management expertise",
|
||||
model_name="gpt-4o-mini",
|
||||
max_loops=1,
|
||||
system_prompt="""You are the Chief Financial Officer. Your role is to:
|
||||
1. Provide financial analysis and insights
|
||||
2. Evaluate financial implications of decisions
|
||||
3. Ensure financial sustainability and risk management
|
||||
4. Guide resource allocation and budgeting
|
||||
5. Maintain financial controls and compliance
|
||||
|
||||
You should be financially astute, risk-aware, and focused on financial health.""",
|
||||
)
|
||||
|
||||
# Create BoardMember objects with roles and expertise
|
||||
board_members = [
|
||||
BoardMember(
|
||||
agent=chairman,
|
||||
role=BoardMemberRole.CHAIRMAN,
|
||||
voting_weight=2.0,
|
||||
expertise_areas=["strategic_planning", "leadership", "governance", "business_strategy"]
|
||||
),
|
||||
BoardMember(
|
||||
agent=cto,
|
||||
role=BoardMemberRole.EXECUTIVE_DIRECTOR,
|
||||
voting_weight=1.5,
|
||||
expertise_areas=["technology", "architecture", "innovation", "technical_strategy"]
|
||||
),
|
||||
BoardMember(
|
||||
agent=cfo,
|
||||
role=BoardMemberRole.EXECUTIVE_DIRECTOR,
|
||||
voting_weight=1.5,
|
||||
expertise_areas=["finance", "risk_management", "budgeting", "financial_analysis"]
|
||||
),
|
||||
]
|
||||
|
||||
print(f"✅ Created {len(board_members)} custom board members")
|
||||
for member in board_members:
|
||||
print(f" - {member.agent.agent_name} ({member.role.value})")
|
||||
|
||||
return board_members
|
||||
|
||||
|
||||
def create_worker_agents() -> List[Agent]:
|
||||
"""
|
||||
Create worker agents for the swarm.
|
||||
|
||||
This function creates specialized worker agents that will be
|
||||
managed by the Board of Directors.
|
||||
|
||||
Returns:
|
||||
List[Agent]: List of worker agents
|
||||
"""
|
||||
print("🛠️ Creating worker agents...")
|
||||
|
||||
# Create specialized worker agents
|
||||
researcher = Agent(
|
||||
agent_name="Research_Analyst",
|
||||
agent_description="Research analyst specializing in market research and data analysis",
|
||||
model_name="gpt-4o-mini",
|
||||
max_loops=1,
|
||||
system_prompt="""You are a Research Analyst. Your responsibilities include:
|
||||
1. Conducting thorough research on assigned topics
|
||||
2. Analyzing data and market trends
|
||||
3. Preparing comprehensive research reports
|
||||
4. Providing data-driven insights and recommendations
|
||||
5. Maintaining high standards of research quality
|
||||
|
||||
You should be analytical, thorough, and evidence-based in your work.""",
|
||||
)
|
||||
|
||||
developer = Agent(
|
||||
agent_name="Software_Developer",
|
||||
agent_description="Software developer with expertise in system design and implementation",
|
||||
model_name="gpt-4o-mini",
|
||||
max_loops=1,
|
||||
system_prompt="""You are a Software Developer. Your responsibilities include:
|
||||
1. Designing and implementing software solutions
|
||||
2. Writing clean, maintainable code
|
||||
3. Conducting code reviews and testing
|
||||
4. Collaborating with team members
|
||||
5. Following best practices and coding standards
|
||||
|
||||
You should be technically skilled, detail-oriented, and focused on quality.""",
|
||||
)
|
||||
|
||||
marketer = Agent(
|
||||
agent_name="Marketing_Specialist",
|
||||
agent_description="Marketing specialist with expertise in digital marketing and brand strategy",
|
||||
model_name="gpt-4o-mini",
|
||||
max_loops=1,
|
||||
system_prompt="""You are a Marketing Specialist. Your responsibilities include:
|
||||
1. Developing marketing strategies and campaigns
|
||||
2. Creating compelling content and messaging
|
||||
3. Analyzing market trends and customer behavior
|
||||
4. Managing brand presence and reputation
|
||||
5. Measuring and optimizing marketing performance
|
||||
|
||||
You should be creative, strategic, and customer-focused in your approach.""",
|
||||
)
|
||||
|
||||
agents = [researcher, developer, marketer]
|
||||
|
||||
print(f"✅ Created {len(agents)} worker agents")
|
||||
for agent in agents:
|
||||
print(f" - {agent.agent_name}: {agent.agent_description}")
|
||||
|
||||
return agents
|
||||
|
||||
|
||||
def run_board_of_directors_example() -> None:
|
||||
"""
|
||||
Run a comprehensive Board of Directors example.
|
||||
|
||||
This function demonstrates the complete workflow of using
|
||||
the Board of Directors swarm to orchestrate tasks.
|
||||
"""
|
||||
print("\n" + "="*60)
|
||||
print("🏛️ BOARD OF DIRECTORS SWARM EXAMPLE")
|
||||
print("="*60)
|
||||
|
||||
try:
|
||||
# Check if Board of Directors feature is enabled
|
||||
if not is_board_feature_enabled():
|
||||
print("⚠️ Board of Directors feature is not enabled. Enabling now...")
|
||||
enable_board_directors_feature()
|
||||
|
||||
# Create custom board members
|
||||
board_members = create_custom_board_members()
|
||||
|
||||
# Create worker agents
|
||||
worker_agents = create_worker_agents()
|
||||
|
||||
# Create the Board of Directors swarm
|
||||
print("\n🏛️ Creating Board of Directors swarm...")
|
||||
board_swarm = BoardOfDirectorsSwarm(
|
||||
name="Executive_Board_Swarm",
|
||||
description="Executive board with specialized roles for strategic decision-making",
|
||||
board_members=board_members,
|
||||
agents=worker_agents,
|
||||
max_loops=2,
|
||||
verbose=True,
|
||||
decision_threshold=0.6,
|
||||
enable_voting=True,
|
||||
enable_consensus=True,
|
||||
)
|
||||
|
||||
print("✅ Board of Directors swarm created successfully!")
|
||||
|
||||
# Display board summary
|
||||
summary = board_swarm.get_board_summary()
|
||||
print(f"\n📊 Board Summary:")
|
||||
print(f" Board Name: {summary['board_name']}")
|
||||
print(f" Total Members: {summary['total_members']}")
|
||||
print(f" Total Agents: {summary['total_agents']}")
|
||||
print(f" Max Loops: {summary['max_loops']}")
|
||||
print(f" Decision Threshold: {summary['decision_threshold']}")
|
||||
|
||||
print(f"\n👥 Board Members:")
|
||||
for member in summary['members']:
|
||||
print(f" - {member['name']} ({member['role']}) - Weight: {member['voting_weight']}")
|
||||
print(f" Expertise: {', '.join(member['expertise_areas'])}")
|
||||
|
||||
# Define a complex task for the board to handle
|
||||
task = """
|
||||
Develop a comprehensive strategy for launching a new AI-powered product in the market.
|
||||
|
||||
The task involves:
|
||||
1. Market research and competitive analysis
|
||||
2. Technical architecture and development planning
|
||||
3. Marketing strategy and go-to-market plan
|
||||
4. Financial projections and risk assessment
|
||||
|
||||
Please coordinate the efforts of all team members to create a cohesive strategy.
|
||||
"""
|
||||
|
||||
print(f"\n📋 Executing task: {task.strip()[:100]}...")
|
||||
|
||||
# Execute the task using the Board of Directors swarm
|
||||
result = board_swarm.run(task=task)
|
||||
|
||||
print("\n✅ Task completed successfully!")
|
||||
print(f"📄 Result type: {type(result)}")
|
||||
|
||||
# Display conversation history
|
||||
if hasattr(result, 'get') and callable(result.get):
|
||||
conversation_history = result.get('conversation_history', [])
|
||||
print(f"\n💬 Conversation History ({len(conversation_history)} messages):")
|
||||
for i, message in enumerate(conversation_history[-5:], 1): # Show last 5 messages
|
||||
role = message.get('role', 'Unknown')
|
||||
content = message.get('content', '')[:100] + "..." if len(message.get('content', '')) > 100 else message.get('content', '')
|
||||
print(f" {i}. {role}: {content}")
|
||||
else:
|
||||
print(f"\n📝 Result: {str(result)[:200]}...")
|
||||
|
||||
print("\n🎉 Board of Directors example completed successfully!")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Error in Board of Directors example: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
|
||||
|
||||
def run_simple_board_example() -> None:
|
||||
"""
|
||||
Run a simple Board of Directors example with default settings.
|
||||
|
||||
This function demonstrates a basic usage of the Board of Directors
|
||||
swarm with minimal configuration.
|
||||
"""
|
||||
print("\n" + "="*60)
|
||||
print("🏛️ SIMPLE BOARD OF DIRECTORS EXAMPLE")
|
||||
print("="*60)
|
||||
|
||||
try:
|
||||
# Create simple worker agents
|
||||
print("🛠️ Creating simple worker agents...")
|
||||
|
||||
analyst = Agent(
|
||||
agent_name="Data_Analyst",
|
||||
agent_description="Data analyst for processing and analyzing information",
|
||||
model_name="gpt-4o-mini",
|
||||
max_loops=1,
|
||||
)
|
||||
|
||||
writer = Agent(
|
||||
agent_name="Content_Writer",
|
||||
agent_description="Content writer for creating reports and documentation",
|
||||
model_name="gpt-4o-mini",
|
||||
max_loops=1,
|
||||
)
|
||||
|
||||
agents = [analyst, writer]
|
||||
|
||||
# Create Board of Directors swarm with default settings
|
||||
print("🏛️ Creating Board of Directors swarm with default settings...")
|
||||
board_swarm = BoardOfDirectorsSwarm(
|
||||
name="Simple_Board_Swarm",
|
||||
agents=agents,
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
print("✅ Simple Board of Directors swarm created!")
|
||||
|
||||
# Simple task
|
||||
task = "Analyze the current market trends and create a summary report with recommendations."
|
||||
|
||||
print(f"\n📋 Executing simple task: {task}")
|
||||
|
||||
# Execute the task
|
||||
result = board_swarm.run(task=task)
|
||||
|
||||
print("\n✅ Simple task completed successfully!")
|
||||
print(f"📄 Result type: {type(result)}")
|
||||
|
||||
if hasattr(result, 'get') and callable(result.get):
|
||||
conversation_history = result.get('conversation_history', [])
|
||||
print(f"\n💬 Conversation History ({len(conversation_history)} messages):")
|
||||
for i, message in enumerate(conversation_history[-3:], 1): # Show last 3 messages
|
||||
role = message.get('role', 'Unknown')
|
||||
content = message.get('content', '')[:80] + "..." if len(message.get('content', '')) > 80 else message.get('content', '')
|
||||
print(f" {i}. {role}: {content}")
|
||||
else:
|
||||
print(f"\n📝 Result: {str(result)[:150]}...")
|
||||
|
||||
print("\n🎉 Simple Board of Directors example completed!")
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Error in simple Board of Directors example: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
|
||||
|
||||
def check_environment() -> bool:
|
||||
"""
|
||||
Check if the environment is properly set up for the example.
|
||||
|
||||
Returns:
|
||||
bool: True if environment is ready, False otherwise
|
||||
"""
|
||||
# Check for OpenAI API key
|
||||
if not os.getenv("OPENAI_API_KEY"):
|
||||
print("⚠️ Warning: OPENAI_API_KEY environment variable not set.")
|
||||
print(" The example may not work without a valid API key.")
|
||||
print(" Please set your OpenAI API key: export OPENAI_API_KEY='your-key-here'")
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def main() -> None:
|
||||
"""
|
||||
Main function to run the Board of Directors examples.
|
||||
"""
|
||||
print("🚀 Board of Directors Swarm Examples")
|
||||
print("="*50)
|
||||
|
||||
# Check environment
|
||||
if not check_environment():
|
||||
print("\n⚠️ Environment check failed. Please set up your environment properly.")
|
||||
return
|
||||
|
||||
try:
|
||||
# Run simple example first
|
||||
run_simple_board_example()
|
||||
|
||||
# Run comprehensive example
|
||||
run_board_of_directors_example()
|
||||
|
||||
print("\n" + "="*60)
|
||||
print("🎉 All Board of Directors examples completed successfully!")
|
||||
print("="*60)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("\n⚠️ Examples interrupted by user.")
|
||||
except Exception as e:
|
||||
print(f"\n❌ Unexpected error: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -0,0 +1,7 @@
|
||||
2025-07-25 16:33:37 | INFO | __main__:run_all_tests:380 - 🚀 Starting Comprehensive Test Suite
|
||||
2025-07-25 16:33:37 | INFO | __main__:test_ollama_installation:67 - 🔍 Testing Ollama Installation
|
||||
2025-07-25 16:33:37 | INFO | __main__:run_command:35 - Running command: ollama --version
|
||||
2025-07-25 16:33:37 | INFO | __main__:run_command:35 - Running command: ollama list
|
||||
2025-07-25 16:33:37 | INFO | __main__:run_command:35 - Running command: ollama list
|
||||
2025-07-25 16:33:37 | INFO | __main__:test_python_dependencies:86 - 🐍 Testing Python Dependencies
|
||||
2025-07-25 16:33:37 | INFO | __main__:run_command:35 - Running command: C:\Users\arona\scoop\apps\python\current\python.exe -m pip list
|
Loading…
Reference in new issue