Merge pull request #836 from ascender1729/fix/update-multi-agent-examples

Fix/Update GraphWorkflow Implementation with GPT-4o-mini Agents
pull/812/merge
Kye Gomez 3 days ago committed by GitHub
commit d06610c6e5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -123,45 +123,53 @@ Coming soon...
## `GraphSwarm` ## `GraphSwarm`
```python ```python
import os from swarms.structs.agent import Agent
from swarms import Edge, GraphWorkflow, Node, NodeType
from dotenv import load_dotenv
# Initialize two agents with GPT-4o-mini
agent1 = Agent(
agent_name="agent1",
system_prompt="You are an autonomous agent executing workflow tasks.",
max_loops=1,
autosave=True,
dashboard=False,
verbose=True,
saved_state_path="agent1_state.json",
model_name="gpt-4o-mini",
)
from swarms import Agent, Edge, GraphWorkflow, Node, NodeType agent2 = Agent(
agent_name="agent2",
from swarm_models import OpenAIChat system_prompt="You are an autonomous agent executing workflow tasks.",
max_loops=1,
load_dotenv() autosave=True,
dashboard=False,
api_key = os.environ.get("OPENAI_API_KEY") verbose=True,
saved_state_path="agent2_state.json",
llm = OpenAIChat( model_name="gpt-4o-mini",
temperature=0.5, openai_api_key=api_key, max_tokens=4000 )
)
agent1 = Agent(llm=llm, max_loops=1, autosave=True, dashboard=True)
agent2 = Agent(llm=llm, max_loops=1, autosave=True, dashboard=True)
def sample_task(): def sample_task():
print("Running sample task") print("Running sample task")
return "Task completed" return "Task completed"
wf_graph = GraphWorkflow() # Build the DAG
wf_graph.add_node(Node(id="agent1", type=NodeType.AGENT, agent=agent1)) wf = GraphWorkflow()
wf_graph.add_node(Node(id="agent2", type=NodeType.AGENT, agent=agent2)) wf.add_node(Node(id="agent1", type=NodeType.AGENT, agent=agent1))
wf_graph.add_node( wf.add_node(Node(id="agent2", type=NodeType.AGENT, agent=agent2))
Node(id="task1", type=NodeType.TASK, callable=sample_task) wf.add_node(Node(id="task1", type=NodeType.TASK, callable=sample_task))
)
wf_graph.add_edge(Edge(source="agent1", target="task1"))
wf_graph.add_edge(Edge(source="agent2", target="task1"))
wf_graph.set_entry_points(["agent1", "agent2"]) # Connect agents to the task
wf_graph.set_end_points(["task1"]) wf.add_edge(Edge(source="agent1", target="task1"))
wf.add_edge(Edge(source="agent2", target="task1"))
print(wf_graph.visualize()) wf.set_entry_points(["agent1", "agent2"])
wf.set_end_points(["task1"])
# Run the workflow # Visualize and run
results = wf_graph.run() print(wf.visualize())
results = wf.run()
print("Execution results:", results) print("Execution results:", results)
``` ```

Loading…
Cancel
Save