Merge pull request #826 from ascender1729/docs/update-quickstart-example

fix: update quickstart examples to use model_name parameter
master
Kye Gomez 1 day ago committed by GitHub
commit d786e9f8dd
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -322,11 +322,20 @@ graph TD;
```python
from swarms import Agent, SequentialWorkflow
from swarm_models import Anthropic
# Initialize agents
agent1 = Agent(agent_name="Blog generator", system_prompt="Generate a blog post", llm=Anthropic(), max_loops=1)
agent2 = Agent(agent_name="Summarizer", system_prompt="Summarize the blog post", llm=Anthropic(), max_loops=1)
# Initialize agents without importing a specific LLM class
agent1 = Agent(
agent_name="Blog generator",
system_prompt="Generate a blog post",
model_name="claude-3-sonnet-20240229",
max_loops=1
)
agent2 = Agent(
agent_name="Summarizer",
system_prompt="Summarize the blog post",
model_name="claude-3-sonnet-20240229",
max_loops=1
)
# Create Sequential workflow
workflow = SequentialWorkflow(agents=[agent1, agent2], max_loops=1)
@ -356,23 +365,37 @@ graph TD;
```python
from swarms import Agent, AgentRearrange
from swarm_models import Anthropic
# Initialize agents
director = Agent(agent_name="Director", system_prompt="Directs tasks", llm=Anthropic(), max_loops=1)
worker1 = Agent(agent_name="Worker1", system_prompt="Generate a transcript", llm=Anthropic(), max_loops=1)
worker2 = Agent(agent_name="Worker2", system_prompt="Summarize the transcript", llm=Anthropic(), max_loops=1)
# Initialize agents using model_name (no explicit LLM import)
director = Agent(
agent_name="Director",
system_prompt="Directs tasks",
model_name="claude-3-sonnet-20240229",
max_loops=1
)
worker1 = Agent(
agent_name="Worker1",
system_prompt="Generate a transcript",
model_name="claude-3-sonnet-20240229",
max_loops=1
)
worker2 = Agent(
agent_name="Worker2",
system_prompt="Summarize the transcript",
model_name="claude-3-sonnet-20240229",
max_loops=1
)
# Define agent relationships and workflow
# Define the flow and create the rearranged system
flow = "Director -> Worker1 -> Worker2"
agent_system = AgentRearrange(agents=[director, worker1, worker2], flow=flow)
# Run agent system
# Run it
output = agent_system.run("Create a YouTube transcript and summary")
print(output)
```
---
---
@ -429,21 +452,49 @@ graph TD;
```python
from swarms import Agent
from swarm_models import OpenAIChat
from swarms.structs.spreadsheet_swarm import SpreadSheetSwarm
import os
# Initialize agents for different marketing platforms
# Initialize agents for different marketing platforms using model_name
agents = [
Agent(agent_name="Twitter Agent", system_prompt="Create a tweet", llm=OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY")), max_loops=1),
Agent(agent_name="Instagram Agent", system_prompt="Create an Instagram post", llm=OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY")), max_loops=1),
Agent(agent_name="Facebook Agent", system_prompt="Create a Facebook post", llm=OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY")), max_loops=1),
Agent(agent_name="LinkedIn Agent", system_prompt="Create a LinkedIn post", llm=OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY")), max_loops=1),
Agent(agent_name="Email Agent", system_prompt="Write a marketing email", llm=OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY")), max_loops=1),
Agent(
agent_name="Twitter Agent",
system_prompt="Create a tweet",
model_name="gpt-4o-mini",
max_loops=1
),
Agent(
agent_name="Instagram Agent",
system_prompt="Create an Instagram post",
model_name="gpt-4o-mini",
max_loops=1
),
Agent(
agent_name="Facebook Agent",
system_prompt="Create a Facebook post",
model_name="gpt-4o-mini",
max_loops=1
),
Agent(
agent_name="LinkedIn Agent",
system_prompt="Create a LinkedIn post",
model_name="gpt-4o-mini",
max_loops=1
),
Agent(
agent_name="Email Agent",
system_prompt="Write a marketing email",
model_name="gpt-4o-mini",
max_loops=1
),
]
# Create the Spreadsheet Swarm
swarm = SpreadSheetSwarm(agents=agents, save_file_path="real_estate_marketing_spreadsheet.csv", run_all_agents=False, max_loops=2)
swarm = SpreadSheetSwarm(
agents=agents,
save_file_path="real_estate_marketing_spreadsheet.csv",
run_all_agents=False,
max_loops=2
)
# Run the swarm
swarm.run("Create posts to promote luxury properties in North Texas.")

Loading…
Cancel
Save