HuggingfaceLLM, jina embeds

Former-commit-id: 8dfb1d33d0
jojo-group-chat
Kye 1 year ago
parent 01b2f4631d
commit d7effca3a6

@ -39,4 +39,4 @@ jobs:
run: sphinx-build -b linkcheck docs build/docs
- name: Run performance tests
run: pytest tests/performance
run: find ./tests -name '*.py' -exec pytest {} \;

@ -97,8 +97,8 @@ To run the documentation, install the project requirements with `poetry install
You can learn more about mkdocs on the [mkdocs website](https://www.mkdocs.org/).
## 🧪 tests
[`pytests`](https://docs.pytest.org/en/7.1.x/) is used to run our tests.
- Run all the tests in the tests folder
`find ./tests -name '*.py' -exec pytest {} \;`
## 📄 license

@ -11,7 +11,11 @@ llm = OpenAIChat(
)
# Initialize the flow
flow = Flow(llm=llm, max_loops=5, dashboard=True,)
flow = Flow(
llm=llm,
max_loops=5,
dashboard=True,
)
flow = Flow(
llm=llm,

@ -19,6 +19,7 @@ flow = Flow(
agent = SimpleAgent(
name="Optimus Prime",
flow=flow,
# Memory
)
out = agent.run("Generate a 10,000 word blog on health and wellness.")

@ -1,6 +0,0 @@
def stream(response):
"""
Yield the response token by token (word by word) from llm
"""
for token in response.split():
yield token

@ -1,2 +0,0 @@
# from swarms.embeddings.pegasus import PegasusEmbedding
from swarms.embeddings.simple_ada import get_ada_embeddings

@ -1,10 +0,0 @@
# This file contains the function that embeds the input into a vector
from chromadb import EmbeddingFunction
def openai_embed(self, input, api_key, model_name):
openai = EmbeddingFunction.OpenAIEmbeddingFunction(
api_key=api_key, model_name=model_name
)
embedding = openai(input)
return embedding

@ -17,7 +17,7 @@ from typing import (
import numpy as np
from swarms.structs.document import Document
from swarms.embeddings.base import Embeddings
from swarms.models.embeddings_base import Embeddings
from langchain.schema.vectorstore import VectorStore
from langchain.utils import xor_args
from langchain.vectorstores.utils import maximal_marginal_relevance

@ -3,6 +3,7 @@ import logging
import torch
from torch.nn.parallel import DistributedDataParallel as DDP
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from termcolor import colored
class HuggingfaceLLM:
@ -20,13 +21,13 @@ class HuggingfaceLLM:
# Usage
```
from finetuning_suite import Inference
from swarms.models import HuggingfaceLLM
model_id = "gpt2-small"
inference = Inference(model_id=model_id)
inference = HuggingfaceLLM(model_id=model_id)
prompt_text = "Once upon a time"
generated_text = inference(prompt_text)
task = "Once upon a time"
generated_text = inference(task)
print(generated_text)
```
"""
@ -42,6 +43,8 @@ class HuggingfaceLLM:
# logger=None,
distributed=False,
decoding=False,
*args,
**kwargs,
):
self.logger = logging.getLogger(__name__)
self.device = (
@ -53,7 +56,6 @@ class HuggingfaceLLM:
self.distributed = distributed
self.decoding = decoding
self.model, self.tokenizer = None, None
# self.log = Logging()
if self.distributed:
assert (
@ -104,12 +106,12 @@ class HuggingfaceLLM:
self.logger.error(f"Failed to load the model or the tokenizer: {error}")
raise
def run(self, prompt_text: str):
def run(self, task: str):
"""
Generate a response based on the prompt text.
Args:
- prompt_text (str): Text to prompt the model.
- task (str): Text to prompt the model.
- max_length (int): Maximum length of the response.
Returns:
@ -119,10 +121,10 @@ class HuggingfaceLLM:
max_length = self.max_length
self.print_dashboard(task)
try:
inputs = self.tokenizer.encode(prompt_text, return_tensors="pt").to(
self.device
)
inputs = self.tokenizer.encode(task, return_tensors="pt").to(self.device)
# self.log.start()
@ -181,12 +183,12 @@ class HuggingfaceLLM:
# Wrapping synchronous calls with async
return self.run(task, *args, **kwargs)
def __call__(self, prompt_text: str):
def __call__(self, task: str):
"""
Generate a response based on the prompt text.
Args:
- prompt_text (str): Text to prompt the model.
- task (str): Text to prompt the model.
- max_length (int): Maximum length of the response.
Returns:
@ -194,12 +196,12 @@ class HuggingfaceLLM:
"""
self.load_model()
max_length = self.max_
max_length = self.max_length
self.print_dashboard(task)
try:
inputs = self.tokenizer.encode(prompt_text, return_tensors="pt").to(
self.device
)
inputs = self.tokenizer.encode(task, return_tensors="pt").to(self.device)
# self.log.start()
@ -258,3 +260,37 @@ class HuggingfaceLLM:
return {"allocated": allocated, "reserved": reserved}
else:
return {"error": "GPU not available"}
def print_dashboard(self, task: str):
"""Print dashboard"""
dashboard = print(
colored(
f"""
HuggingfaceLLM Dashboard
--------------------------------------------
Model Name: {self.model_id}
Tokenizer: {self.tokenizer}
Model MaxLength: {self.max_length}
Model Device: {self.device}
Model Quantization: {self.quantize}
Model Quantization Config: {self.quantization_config}
Model Verbose: {self.verbose}
Model Distributed: {self.distributed}
Model Decoding: {self.decoding}
----------------------------------------
Metadata:
Task Memory Consumption: {self.memory_consumption()}
GPU Available: {self.gpu_available()}
----------------------------------------
Task Environment:
Task: {task}
""",
"red",
)
)
print(dashboard)

@ -0,0 +1,214 @@
import logging
import torch
from numpy.linalg import norm
from torch.nn.parallel import DistributedDataParallel as DDP
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
def cos_sim(a, b):
return a @ b.T / (norm(a) * norm(b))
class JinaEmbeddings:
"""
A class for running inference on a given model.
Attributes:
model_id (str): The ID of the model.
device (str): The device to run the model on (either 'cuda' or 'cpu').
max_length (int): The maximum length of the output sequence.
quantize (bool, optional): Whether to use quantization. Defaults to False.
quantization_config (dict, optional): The configuration for quantization.
verbose (bool, optional): Whether to print verbose logs. Defaults to False.
logger (logging.Logger, optional): The logger to use. Defaults to a basic logger.
# Usage
```
from swarms.models import JinaEmbeddings
model = JinaEmbeddings()
embeddings = model("Encode this text")
print(embeddings)
```
"""
def __init__(
self,
model_id: str,
device: str = None,
max_length: int = 500,
quantize: bool = False,
quantization_config: dict = None,
verbose=False,
# logger=None,
distributed=False,
decoding=False,
cos_sim: bool = False,
*args,
**kwargs,
):
self.logger = logging.getLogger(__name__)
self.device = (
device if device else ("cuda" if torch.cuda.is_available() else "cpu")
)
self.model_id = model_id
self.max_length = max_length
self.verbose = verbose
self.distributed = distributed
self.decoding = decoding
self.model, self.tokenizer = None, None
# self.log = Logging()
self.cos_sim = cos_sim
if self.distributed:
assert (
torch.cuda.device_count() > 1
), "You need more than 1 gpu for distributed processing"
bnb_config = None
if quantize:
if not quantization_config:
quantization_config = {
"load_in_4bit": True,
"bnb_4bit_use_double_quant": True,
"bnb_4bit_quant_type": "nf4",
"bnb_4bit_compute_dtype": torch.bfloat16,
}
bnb_config = BitsAndBytesConfig(**quantization_config)
try:
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id, quantization_config=bnb_config, trust_remote_code=True
)
self.model # .to(self.device)
except Exception as e:
self.logger.error(f"Failed to load the model or the tokenizer: {e}")
raise
def load_model(self):
"""Load the model"""
if not self.model or not self.tokenizer:
try:
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
bnb_config = (
BitsAndBytesConfig(**self.quantization_config)
if self.quantization_config
else None
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id,
quantization_config=bnb_config,
trust_remote_code=True,
).to(self.device)
if self.distributed:
self.model = DDP(self.model)
except Exception as error:
self.logger.error(f"Failed to load the model or the tokenizer: {error}")
raise
def run(self, task: str):
"""
Generate a response based on the prompt text.
Args:
- task (str): Text to prompt the model.
- max_length (int): Maximum length of the response.
Returns:
- Generated text (str).
"""
self.load_model()
max_length = self.max_length
try:
embeddings = self.model.encode([task], max_length=max_length)
if self.cos_sim:
print(cos_sim(embeddings[0], embeddings[1]))
else:
return embeddings[0]
except Exception as e:
self.logger.error(f"Failed to generate the text: {e}")
raise
async def run_async(self, task: str, *args, **kwargs) -> str:
"""
Run the model asynchronously
Args:
task (str): Task to run.
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Examples:
>>> mpt_instance = MPT('mosaicml/mpt-7b-storywriter', "EleutherAI/gpt-neox-20b", max_tokens=150)
>>> mpt_instance("generate", "Once upon a time in a land far, far away...")
'Once upon a time in a land far, far away...'
>>> mpt_instance.batch_generate(["In the deep jungles,", "At the heart of the city,"], temperature=0.7)
['In the deep jungles,',
'At the heart of the city,']
>>> mpt_instance.freeze_model()
>>> mpt_instance.unfreeze_model()
"""
# Wrapping synchronous calls with async
return self.run(task, *args, **kwargs)
def __call__(self, task: str):
"""
Generate a response based on the prompt text.
Args:
- task (str): Text to prompt the model.
- max_length (int): Maximum length of the response.
Returns:
- Generated text (str).
"""
self.load_model()
max_length = self.max_length
try:
embeddings = self.model.encode([task], max_length=max_length)
if self.cos_sim:
print(cos_sim(embeddings[0], embeddings[1]))
else:
return embeddings[0]
except Exception as e:
self.logger.error(f"Failed to generate the text: {e}")
raise
async def __call_async__(self, task: str, *args, **kwargs) -> str:
"""Call the model asynchronously""" ""
return await self.run_async(task, *args, **kwargs)
def save_model(self, path: str):
"""Save the model to a given path"""
self.model.save_pretrained(path)
self.tokenizer.save_pretrained(path)
def gpu_available(self) -> bool:
"""Check if GPU is available"""
return torch.cuda.is_available()
def memory_consumption(self) -> dict:
"""Get the memory consumption of the GPU"""
if self.gpu_available():
torch.cuda.synchronize()
allocated = torch.cuda.memory_allocated()
reserved = torch.cuda.memory_reserved()
return {"allocated": allocated, "reserved": reserved}
else:
return {"error": "GPU not available"}

@ -25,7 +25,7 @@ from tenacity import (
stop_after_attempt,
wait_exponential,
)
from swarms.embeddings.base import Embeddings
from swarms.models.embeddings_base import Embeddings
def get_from_dict_or_env(

@ -1,10 +1,9 @@
import openai
from dotenv import load_dotenv
from os import getenv
load_dotenv()
from os import getenv
def get_ada_embeddings(text: str, model: str = "text-embedding-ada-002"):
"""

@ -0,0 +1,265 @@
import logging
import torch
from torch.nn.parallel import DistributedDataParallel as DDP
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
class YarnMistral128:
"""
A class for running inference on a given model.
Attributes:
model_id (str): The ID of the model.
device (str): The device to run the model on (either 'cuda' or 'cpu').
max_length (int): The maximum length of the output sequence.
quantize (bool, optional): Whether to use quantization. Defaults to False.
quantization_config (dict, optional): The configuration for quantization.
verbose (bool, optional): Whether to print verbose logs. Defaults to False.
logger (logging.Logger, optional): The logger to use. Defaults to a basic logger.
# Usage
```
from finetuning_suite import Inference
model_id = "gpt2-small"
inference = Inference(model_id=model_id)
prompt_text = "Once upon a time"
generated_text = inference(prompt_text)
print(generated_text)
```
"""
def __init__(
self,
model_id: str = "NousResearch/Yarn-Mistral-7b-128k",
device: str = None,
max_length: int = 500,
quantize: bool = False,
quantization_config: dict = None,
verbose=False,
# logger=None,
distributed=False,
decoding=False,
):
self.logger = logging.getLogger(__name__)
self.device = (
device if device else ("cuda" if torch.cuda.is_available() else "cpu")
)
self.model_id = model_id
self.max_length = max_length
self.verbose = verbose
self.distributed = distributed
self.decoding = decoding
self.model, self.tokenizer = None, None
# self.log = Logging()
if self.distributed:
assert (
torch.cuda.device_count() > 1
), "You need more than 1 gpu for distributed processing"
bnb_config = None
if quantize:
if not quantization_config:
quantization_config = {
"load_in_4bit": True,
"bnb_4bit_use_double_quant": True,
"bnb_4bit_quant_type": "nf4",
"bnb_4bit_compute_dtype": torch.bfloat16,
}
bnb_config = BitsAndBytesConfig(**quantization_config)
try:
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id,
quantization_config=bnb_config,
use_flash_attention_2=True,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
)
self.model # .to(self.device)
except Exception as e:
self.logger.error(f"Failed to load the model or the tokenizer: {e}")
raise
def load_model(self):
"""Load the model"""
if not self.model or not self.tokenizer:
try:
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
bnb_config = (
BitsAndBytesConfig(**self.quantization_config)
if self.quantization_config
else None
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id, quantization_config=bnb_config
).to(self.device)
if self.distributed:
self.model = DDP(self.model)
except Exception as error:
self.logger.error(f"Failed to load the model or the tokenizer: {error}")
raise
def run(self, prompt_text: str):
"""
Generate a response based on the prompt text.
Args:
- prompt_text (str): Text to prompt the model.
- max_length (int): Maximum length of the response.
Returns:
- Generated text (str).
"""
self.load_model()
max_length = self.max_length
try:
inputs = self.tokenizer.encode(prompt_text, return_tensors="pt").to(
self.device
)
# self.log.start()
if self.decoding:
with torch.no_grad():
for _ in range(max_length):
output_sequence = []
outputs = self.model.generate(
inputs, max_length=len(inputs) + 1, do_sample=True
)
output_tokens = outputs[0][-1]
output_sequence.append(output_tokens.item())
# print token in real-time
print(
self.tokenizer.decode(
[output_tokens], skip_special_tokens=True
),
end="",
flush=True,
)
inputs = outputs
else:
with torch.no_grad():
outputs = self.model.generate(
inputs, max_length=max_length, do_sample=True
)
del inputs
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
self.logger.error(f"Failed to generate the text: {e}")
raise
async def run_async(self, task: str, *args, **kwargs) -> str:
"""
Run the model asynchronously
Args:
task (str): Task to run.
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Examples:
>>> mpt_instance = MPT('mosaicml/mpt-7b-storywriter', "EleutherAI/gpt-neox-20b", max_tokens=150)
>>> mpt_instance("generate", "Once upon a time in a land far, far away...")
'Once upon a time in a land far, far away...'
>>> mpt_instance.batch_generate(["In the deep jungles,", "At the heart of the city,"], temperature=0.7)
['In the deep jungles,',
'At the heart of the city,']
>>> mpt_instance.freeze_model()
>>> mpt_instance.unfreeze_model()
"""
# Wrapping synchronous calls with async
return self.run(task, *args, **kwargs)
def __call__(self, prompt_text: str):
"""
Generate a response based on the prompt text.
Args:
- prompt_text (str): Text to prompt the model.
- max_length (int): Maximum length of the response.
Returns:
- Generated text (str).
"""
self.load_model()
max_length = self.max_
try:
inputs = self.tokenizer.encode(prompt_text, return_tensors="pt").to(
self.device
)
# self.log.start()
if self.decoding:
with torch.no_grad():
for _ in range(max_length):
output_sequence = []
outputs = self.model.generate(
inputs, max_length=len(inputs) + 1, do_sample=True
)
output_tokens = outputs[0][-1]
output_sequence.append(output_tokens.item())
# print token in real-time
print(
self.tokenizer.decode(
[output_tokens], skip_special_tokens=True
),
end="",
flush=True,
)
inputs = outputs
else:
with torch.no_grad():
outputs = self.model.generate(
inputs, max_length=max_length, do_sample=True
)
del inputs
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
self.logger.error(f"Failed to generate the text: {e}")
raise
async def __call_async__(self, task: str, *args, **kwargs) -> str:
"""Call the model asynchronously""" ""
return await self.run_async(task, *args, **kwargs)
def save_model(self, path: str):
"""Save the model to a given path"""
self.model.save_pretrained(path)
self.tokenizer.save_pretrained(path)
def gpu_available(self) -> bool:
"""Check if GPU is available"""
return torch.cuda.is_available()
def memory_consumption(self) -> dict:
"""Get the memory consumption of the GPU"""
if self.gpu_available():
torch.cuda.synchronize()
allocated = torch.cuda.memory_allocated()
reserved = torch.cuda.memory_reserved()
return {"allocated": allocated, "reserved": reserved}
else:
return {"error": "GPU not available"}

@ -1,9 +1,9 @@
"""
TODO:
- Add a retry mechanism
- Add prompt injection letting the agent know it's in a flow, Flow prompt
- Dynamic temperature handling
- Add tools
- Add open interpreter style conversation
- Add configurable save and restore so the user can restore from previus flows
- Add memory vector database retrieval
"""
import json
@ -252,7 +252,8 @@ class Flow:
History: {response}
""", **kwargs
""",
**kwargs,
)
# print(f"Next query: {response}")
# break

@ -0,0 +1,20 @@
"""
Sequential Workflow
from swarms.models import OpenAIChat, Mistral
from swarms.structs import SequentialWorkflow
llm = OpenAIChat(openai_api_key="")
mistral = Mistral()
# Max loops will run over the sequential pipeline twice
workflow = SequentialWorkflow(max_loops=2)
workflow.add("What's the weather in miami", llm)
workflow.add("Create a report on these metrics", mistral)
workflow.run()
"""

@ -1,6 +1,6 @@
import pytest
from unittest.mock import patch
from swarms.embeddings.pegasus import PegasusEmbedding
from swarms.models.pegasus import PegasusEmbedding
def test_init():

Loading…
Cancel
Save