[BUFG][TypeError: descriptor 'append' for 'list' objects doesn't apply to a 'Task' object

]
pull/362/head
Kye 12 months ago
parent cd02630a45
commit dae6d5e9c8

@ -0,0 +1,26 @@
import os
from dotenv import load_dotenv
from swarms import OpenAIChat, Task, ConcurrentWorkflow, Agent
# Load environment variables from .env file
load_dotenv()
# Load environment variables
llm = OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY"))
agent = Agent(llm=llm, max_loops=1)
# Create a workflow
workflow = ConcurrentWorkflow(max_workers=5)
# Create tasks
task1 = Task(agent, "What's the weather in miami")
task2 = Task(agent, "What's the weather in new york")
task3 = Task(agent, "What's the weather in london")
# Add tasks to the workflow
workflow.add(task1)
workflow.add(task2)
workflow.add(task3)
# Run the workflow
workflow.run()

@ -5,36 +5,13 @@ import threading
from dotenv import load_dotenv from dotenv import load_dotenv
from scripts.auto_tests_docs.docs import DOCUMENTATION_WRITER_SOP from scripts.auto_tests_docs.docs import DOCUMENTATION_WRITER_SOP
from swarms import OpenAIChat from swarms import OpenAIChat
from swarms.structs.agent import Agent
from swarms.structs.autoscaler import AutoScaler
from swarms.structs.base import BaseStructure
from swarms.structs.base_swarm import AbstractSwarm
from swarms.structs.base_workflow import BaseWorkflow
from swarms.structs.concurrent_workflow import ConcurrentWorkflow
from swarms.structs.conversation import Conversation
from swarms.structs.groupchat import GroupChat, GroupChatManager
from swarms.structs.model_parallizer import ModelParallelizer
from swarms.structs.multi_agent_collab import MultiAgentCollaboration
from swarms.structs.nonlinear_workflow import NonlinearWorkflow
from swarms.structs.recursive_workflow import RecursiveWorkflow
from swarms.structs.schemas import (
Artifact,
ArtifactUpload,
StepInput,
TaskInput,
)
from swarms.structs.sequential_workflow import SequentialWorkflow
from swarms.structs.swarm_net import SwarmNetwork
from swarms.structs.utils import (
distribute_tasks,
extract_key_from_json,
extract_tokens_from_text,
find_agent_by_id,
find_token_in_text,
parse_tasks,
)
###########
###############
load_dotenv() load_dotenv()
api_key = os.getenv("OPENAI_API_KEY") api_key = os.getenv("OPENAI_API_KEY")
@ -86,33 +63,7 @@ def process_documentation(
def main(module: str = "docs/swarms/structs"): def main(module: str = "docs/swarms/structs"):
items = [ items = []
Agent,
SequentialWorkflow,
AutoScaler,
Conversation,
TaskInput,
Artifact,
ArtifactUpload,
StepInput,
SwarmNetwork,
ModelParallelizer,
MultiAgentCollaboration,
AbstractSwarm,
GroupChat,
GroupChatManager,
parse_tasks,
find_agent_by_id,
distribute_tasks,
find_token_in_text,
extract_key_from_json,
extract_tokens_from_text,
ConcurrentWorkflow,
RecursiveWorkflow,
NonlinearWorkflow,
BaseWorkflow,
BaseStructure,
]
threads = [] threads = []
for item in items: for item in items:

@ -2,10 +2,12 @@ from swarms.memory.base_vectordb import VectorDatabase
from swarms.memory.short_term_memory import ShortTermMemory from swarms.memory.short_term_memory import ShortTermMemory
from swarms.memory.sqlite import SQLiteDB from swarms.memory.sqlite import SQLiteDB
from swarms.memory.weaviate_db import WeaviateDB from swarms.memory.weaviate_db import WeaviateDB
from swarms.memory.visual_memory import VisualShortTermMemory
__all__ = [ __all__ = [
"VectorDatabase", "VectorDatabase",
"ShortTermMemory", "ShortTermMemory",
"SQLiteDB", "SQLiteDB",
"WeaviateDB", "WeaviateDB",
"VisualShortTermMemory",
] ]

@ -0,0 +1,118 @@
from typing import List
from datetime import datetime
class VisualShortTermMemory:
"""
A class representing visual short-term memory.
Attributes:
memory (list): A list to store images and their descriptions.
Examples:
example = VisualShortTermMemory()
example.add(
images=["image1.jpg", "image2.jpg"],
description=["description1", "description2"],
timestamps=[1.0, 2.0],
locations=["location1", "location2"],
)
print(example.return_as_string())
# print(example.get_images())
"""
def __init__(self):
self.memory = []
def add(
self,
images: List[str] = None,
description: List[str] = None,
timestamps: List[float] = None,
locations: List[str] = None,
):
"""
Add images and their descriptions to the memory.
Args:
images (list): A list of image paths.
description (list): A list of corresponding descriptions.
timestamps (list): A list of timestamps for each image.
locations (list): A list of locations where the images were captured.
"""
current_time = datetime.now()
# Create a dictionary of each image and description
# and append it to the memory
for image, description, timestamp, location in zip(
images, description, timestamps, locations
):
self.memory.append(
{
"image": image,
"description": description,
"timestamp": timestamp,
"location": location,
"added_at": current_time,
}
)
def get_images(self):
"""
Get a list of all images in the memory.
Returns:
list: A list of image paths.
"""
return [item["image"] for item in self.memory]
def get_descriptions(self):
"""
Get a list of all descriptions in the memory.
Returns:
list: A list of descriptions.
"""
return [item["description"] for item in self.memory]
def search_by_location(self, location: str):
"""
Search for images captured at a specific location.
Args:
location (str): The location to search for.
Returns:
list: A list of images captured at the specified location.
"""
return [
item["image"]
for item in self.memory
if item["location"] == location
]
def search_by_timestamp(self, start_time: float, end_time: float):
"""
Search for images captured within a specific time range.
Args:
start_time (float): The start time of the range.
end_time (float): The end time of the range.
Returns:
list: A list of images captured within the specified time range.
"""
return [
item["image"]
for item in self.memory
if start_time <= item["timestamp"] <= end_time
]
def return_as_string(self):
"""
Return the memory as a string.
Returns:
str: A string representation of the memory.
"""
return str(self.memory)

@ -91,11 +91,13 @@ class ConcurrentWorkflow(BaseStructure):
try: try:
result = future.result() result = future.result()
if self.print_results: if self.print_results:
print(f"Task {task}: {result}") logger.info(f"Task {task}: {result}")
if self.return_results: if self.return_results:
results.append(result) results.append(result)
except Exception as e: except Exception as e:
print(f"Task {task} generated an exception: {e}") logger.error(
f"Task {task} generated an exception: {e}"
)
return results if self.return_results else None return results if self.return_results else None

@ -33,13 +33,13 @@ class RecursiveWorkflow(BaseStructure):
def __init__(self, stop_token: str = "<DONE>"): def __init__(self, stop_token: str = "<DONE>"):
self.stop_token = stop_token self.stop_token = stop_token
self.task_pool = List[Task] self.task_pool = []
assert ( assert (
self.stop_token is not None self.stop_token is not None
), "stop_token cannot be None" ), "stop_token cannot be None"
def add(self, task: Task, tasks: List[Task] = None): def add(self, task: Task = None, tasks: List[Task] = None):
"""Adds a task to the workflow. """Adds a task to the workflow.
Args: Args:
@ -49,12 +49,13 @@ class RecursiveWorkflow(BaseStructure):
try: try:
if tasks: if tasks:
for task in tasks: for task in tasks:
self.task_pool.append(task) if isinstance(task, Task):
logger.info( self.task_pool.append(task)
"[INFO][RecursiveWorkflow] Added task" logger.info(
f" {task} to workflow" "[INFO][RecursiveWorkflow] Added task"
) f" {task} to workflow"
else: )
elif isinstance(task, Task):
self.task_pool.append(task) self.task_pool.append(task)
logger.info( logger.info(
f"[INFO][RecursiveWorkflow] Added task {task} to" f"[INFO][RecursiveWorkflow] Added task {task} to"
@ -74,8 +75,8 @@ class RecursiveWorkflow(BaseStructure):
try: try:
for task in self.task_pool: for task in self.task_pool:
while True: while True:
result = task.execute() result = task.run()
if self.stop_token in result: if result is not None and self.stop_token in result:
break break
logger.info(f"{result}") logger.info(f"{result}")
except Exception as error: except Exception as error:

@ -54,9 +54,8 @@ class Task:
>>> task.result >>> task.result
""" """
description: str
agent: Union[Callable, Agent] agent: Union[Callable, Agent]
description: str
args: List[Any] = field(default_factory=list) args: List[Any] = field(default_factory=list)
kwargs: Dict[str, Any] = field(default_factory=dict) kwargs: Dict[str, Any] = field(default_factory=dict)
result: Any = None result: Any = None

Loading…
Cancel
Save