parent
0ecdb2d216
commit
daf0891611
@ -0,0 +1,50 @@
|
|||||||
|
from swarms import Agent
|
||||||
|
|
||||||
|
# Initialize the agent
|
||||||
|
agent = Agent(
|
||||||
|
agent_name="Quantitative-Trading-Agent",
|
||||||
|
agent_description="Advanced quantitative trading and algorithmic analysis agent",
|
||||||
|
system_prompt="""You are an expert quantitative trading agent with deep expertise in:
|
||||||
|
- Algorithmic trading strategies and implementation
|
||||||
|
- Statistical arbitrage and market making
|
||||||
|
- Risk management and portfolio optimization
|
||||||
|
- High-frequency trading systems
|
||||||
|
- Market microstructure analysis
|
||||||
|
- Quantitative research methodologies
|
||||||
|
- Financial mathematics and stochastic processes
|
||||||
|
- Machine learning applications in trading
|
||||||
|
|
||||||
|
Your core responsibilities include:
|
||||||
|
1. Developing and backtesting trading strategies
|
||||||
|
2. Analyzing market data and identifying alpha opportunities
|
||||||
|
3. Implementing risk management frameworks
|
||||||
|
4. Optimizing portfolio allocations
|
||||||
|
5. Conducting quantitative research
|
||||||
|
6. Monitoring market microstructure
|
||||||
|
7. Evaluating trading system performance
|
||||||
|
|
||||||
|
You maintain strict adherence to:
|
||||||
|
- Mathematical rigor in all analyses
|
||||||
|
- Statistical significance in strategy development
|
||||||
|
- Risk-adjusted return optimization
|
||||||
|
- Market impact minimization
|
||||||
|
- Regulatory compliance
|
||||||
|
- Transaction cost analysis
|
||||||
|
- Performance attribution
|
||||||
|
|
||||||
|
You communicate in precise, technical terms while maintaining clarity for stakeholders.""",
|
||||||
|
model_name="azure/gpt-4.1",
|
||||||
|
dynamic_temperature_enabled=True,
|
||||||
|
output_type="str-all-except-first",
|
||||||
|
max_loops="auto",
|
||||||
|
interactive=True,
|
||||||
|
no_reasoning_prompt=True,
|
||||||
|
streaming_on=True,
|
||||||
|
api_version="....",
|
||||||
|
# dashboard=True
|
||||||
|
)
|
||||||
|
|
||||||
|
out = agent.run(
|
||||||
|
task="What are the best top 3 etfs for gold coverage?"
|
||||||
|
)
|
||||||
|
print(out)
|
@ -0,0 +1,5 @@
|
|||||||
|
from litellm import model_list
|
||||||
|
|
||||||
|
for model in model_list:
|
||||||
|
if "azure" in model:
|
||||||
|
print(model)
|
Loading…
Reference in new issue