CLEAN UP: NON EXISTENT TESTS

Former-commit-id: ef9d4b40a3ac7abe923a21b34ff263f11b1b143d
clean-history
Kye 1 year ago
parent 2d05a09e1c
commit daf3c9e6a6

@ -10,6 +10,7 @@ llm = OpenAIChat(
# max_tokens=100,
)
@tool
def search_api(query: str):
"""
@ -18,13 +19,12 @@ def search_api(query: str):
pass
## Initialize the workflow
flow = Flow(
llm=llm,
max_loops=5,
dashboard=True,
tools = [search_api]
tools=[search_api]
# stopping_condition=None, # You can define a stopping condition as needed.
# loop_interval=1,
# retry_attempts=3,

@ -6,4 +6,3 @@ result = speechT5("Hello, how are you?")
speechT5.save_speech(result)
print("Speech saved successfully!")

@ -2,4 +2,6 @@ from swarms.models.vilt import Vilt
model = Vilt()
output = model("What is this image", "http://images.cocodataset.org/val2017/000000039769.jpg")
output = model(
"What is this image", "http://images.cocodataset.org/val2017/000000039769.jpg"
)

@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry]
name = "swarms"
version = "2.3.2"
version = "2.3.4"
description = "Swarms - Pytorch"
license = "MIT"
authors = ["Kye Gomez <kye@apac.ai>"]

@ -10,5 +10,6 @@ from swarms.agents import * # noqa: E402, F403
from swarms.swarms import * # noqa: E402, F403
from swarms.structs import * # noqa: E402, F403
from swarms.models import * # noqa: E402, F403
# from swarms.chunkers import * # noqa: E402, F403
from swarms.workers import * # noqa: E402, F403

@ -16,7 +16,8 @@ from swarms.models.mpt import MPT7B # noqa: E402
# MultiModal Models
from swarms.models.idefics import Idefics # noqa: E402
from swarms.models.kosmos_two import Kosmos # noqa: E402
# from swarms.models.kosmos_two import Kosmos # noqa: E402
from swarms.models.vilt import Vilt # noqa: E402
from swarms.models.nougat import Nougat # noqa: E402
from swarms.models.layoutlm_document_qa import LayoutLMDocumentQA # noqa: E402
@ -34,7 +35,7 @@ __all__ = [
"OpenAIChat",
"Zephyr",
"Idefics",
"Kosmos",
# "Kosmos",
"Vilt",
"Nougat",
"LayoutLMDocumentQA",

@ -1,5 +1,6 @@
from swarms.swarms.dialogue_simulator import DialogueSimulator
from swarms.swarms.autoscaler import AutoScaler
# from swarms.swarms.orchestrate import Orchestrator
from swarms.swarms.god_mode import GodMode
from swarms.swarms.simple_swarm import SimpleSwarm

@ -3,7 +3,7 @@ import pytest
from swarms.models import OpenAIChat
from swarms.models.anthropic import Anthropic
from swarms.structs.flow import Flow
from swarms.swarms.flow import GroupChat, GroupChatManager
from swarms.swarms.groupchat import GroupChat, GroupChatManager
llm = OpenAIChat()
llm2 = Anthropic()

@ -1,61 +0,0 @@
from unittest.mock import patch
from swarms.swarms.scalable_groupchat import ScalableGroupChat
def test_scalablegroupchat_initialization():
scalablegroupchat = ScalableGroupChat(
worker_count=5, collection_name="swarm", api_key="api_key"
)
assert isinstance(scalablegroupchat, ScalableGroupChat)
assert len(scalablegroupchat.workers) == 5
assert scalablegroupchat.collection_name == "swarm"
assert scalablegroupchat.api_key == "api_key"
@patch("chromadb.utils.embedding_functions.OpenAIEmbeddingFunction")
def test_scalablegroupchat_embed(mock_openaiembeddingfunction):
scalablegroupchat = ScalableGroupChat(
worker_count=5, collection_name="swarm", api_key="api_key"
)
scalablegroupchat.embed("input", "model_name")
assert mock_openaiembeddingfunction.call_count == 1
@patch("swarms.swarms.scalable_groupchat.ScalableGroupChat.collection.query")
def test_scalablegroupchat_retrieve_results(mock_query):
scalablegroupchat = ScalableGroupChat(
worker_count=5, collection_name="swarm", api_key="api_key"
)
scalablegroupchat.retrieve_results(1)
assert mock_query.call_count == 1
@patch("swarms.swarms.scalable_groupchat.ScalableGroupChat.collection.add")
def test_scalablegroupchat_update_vector_db(mock_add):
scalablegroupchat = ScalableGroupChat(
worker_count=5, collection_name="swarm", api_key="api_key"
)
scalablegroupchat.update_vector_db({"vector": "vector", "task_id": "task_id"})
assert mock_add.call_count == 1
@patch("swarms.swarms.scalable_groupchat.ScalableGroupChat.collection.add")
def test_scalablegroupchat_append_to_db(mock_add):
scalablegroupchat = ScalableGroupChat(
worker_count=5, collection_name="swarm", api_key="api_key"
)
scalablegroupchat.append_to_db("result")
assert mock_add.call_count == 1
@patch("swarms.swarms.scalable_groupchat.ScalableGroupChat.collection.add")
@patch("swarms.swarms.scalable_groupchat.ScalableGroupChat.embed")
@patch("swarms.swarms.scalable_groupchat.ScalableGroupChat.run")
def test_scalablegroupchat_chat(mock_run, mock_embed, mock_add):
scalablegroupchat = ScalableGroupChat(
worker_count=5, collection_name="swarm", api_key="api_key"
)
scalablegroupchat.chat(sender_id=1, receiver_id=2, message="Hello, Agent 2!")
assert mock_embed.call_count == 1
assert mock_add.call_count == 1
assert mock_run.call_count == 1

@ -1,85 +0,0 @@
import pytest
import logging
from unittest.mock import patch
from swarms.swarms.swarms import (
HierarchicalSwarm,
) # replace with your actual module name
@pytest.fixture
def swarm():
return HierarchicalSwarm(
model_id="gpt-4",
openai_api_key="some_api_key",
use_vectorstore=True,
embedding_size=1024,
use_async=False,
human_in_the_loop=True,
model_type="openai",
boss_prompt="boss",
worker_prompt="worker",
temperature=0.5,
max_iterations=100,
logging_enabled=True,
)
@pytest.fixture
def swarm_no_logging():
return HierarchicalSwarm(logging_enabled=False)
def test_swarm_init(swarm):
assert swarm.model_id == "gpt-4"
assert swarm.openai_api_key == "some_api_key"
assert swarm.use_vectorstore
assert swarm.embedding_size == 1024
assert not swarm.use_async
assert swarm.human_in_the_loop
assert swarm.model_type == "openai"
assert swarm.boss_prompt == "boss"
assert swarm.worker_prompt == "worker"
assert swarm.temperature == 0.5
assert swarm.max_iterations == 100
assert swarm.logging_enabled
assert isinstance(swarm.logger, logging.Logger)
def test_swarm_no_logging_init(swarm_no_logging):
assert not swarm_no_logging.logging_enabled
assert swarm_no_logging.logger.disabled
@patch("your_module.OpenAI")
@patch("your_module.HuggingFaceLLM")
def test_initialize_llm(mock_huggingface, mock_openai, swarm):
swarm.initialize_llm("openai")
mock_openai.assert_called_once_with(openai_api_key="some_api_key", temperature=0.5)
swarm.initialize_llm("huggingface")
mock_huggingface.assert_called_once_with(model_id="gpt-4", temperature=0.5)
@patch("your_module.HierarchicalSwarm.initialize_llm")
def test_initialize_tools(mock_llm, swarm):
mock_llm.return_value = "mock_llm_class"
tools = swarm.initialize_tools("openai")
assert "mock_llm_class" in tools
@patch("your_module.HierarchicalSwarm.initialize_llm")
def test_initialize_tools_with_extra_tools(mock_llm, swarm):
mock_llm.return_value = "mock_llm_class"
tools = swarm.initialize_tools("openai", extra_tools=["tool1", "tool2"])
assert "tool1" in tools
assert "tool2" in tools
@patch("your_module.OpenAIEmbeddings")
@patch("your_module.FAISS")
def test_initialize_vectorstore(mock_faiss, mock_openai_embeddings, swarm):
mock_openai_embeddings.return_value.embed_query = "embed_query"
swarm.initialize_vectorstore()
mock_faiss.assert_called_once_with(
"embed_query", instance_of(faiss.IndexFlatL2), instance_of(InMemoryDocstore), {}
)
Loading…
Cancel
Save