parent
69f1a8ceb5
commit
de03769f8b
@ -1,3 +1,3 @@
|
|||||||
# from swarms import Swarms, swarm
|
# from swarms import Swarms, swarm
|
||||||
from swarms.swarms import Swarms, swarm
|
from swarms.swarms import Swarms, swarm
|
||||||
from swarms.agents import worker_node, UltraNode
|
from swarms.agents import worker_node, WorkerUltraNode
|
@ -0,0 +1,86 @@
|
|||||||
|
from typing import Dict, Optional
|
||||||
|
import logging
|
||||||
|
|
||||||
|
from celery import Task
|
||||||
|
|
||||||
|
from langchain.agents.agent import AgentExecutor
|
||||||
|
from langchain.callbacks.manager import CallbackManager
|
||||||
|
from langchain.chains.conversation.memory import ConversationBufferMemory
|
||||||
|
from langchain.memory.chat_memory import BaseChatMemory
|
||||||
|
|
||||||
|
from swarms.tools.main import BaseToolSet, ToolsFactory
|
||||||
|
from .AgentBuilder import AgentBuilder
|
||||||
|
from .callback import EVALCallbackHandler, ExecutionTracingCallbackHandler
|
||||||
|
|
||||||
|
|
||||||
|
CallbackManager.set_handler(handler=EVALCallbackHandler())
|
||||||
|
|
||||||
|
class AgentManager:
|
||||||
|
def __init__(self, toolsets: list[BaseToolSet] = []):
|
||||||
|
if not isinstance(toolsets, list):
|
||||||
|
raise TypeError("Toolsets must be a list")
|
||||||
|
self.toolsets: list[BaseToolSet] = toolsets
|
||||||
|
self.memories: Dict[str, BaseChatMemory] = {}
|
||||||
|
self.executors: Dict[str, AgentExecutor] = {}
|
||||||
|
|
||||||
|
def create_memory(self) -> BaseChatMemory:
|
||||||
|
return ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
||||||
|
|
||||||
|
def get_or_create_memory(self, session: str) -> BaseChatMemory:
|
||||||
|
if not isinstance(session, str):
|
||||||
|
raise TypeError("Session must be a string")
|
||||||
|
if not session:
|
||||||
|
raise ValueError("Session is empty")
|
||||||
|
if not (session in self.memories):
|
||||||
|
self.memories[session] = self.create_memory()
|
||||||
|
return self.memories[session]
|
||||||
|
|
||||||
|
def create_executor(self, session: str, execution: Optional[Task] = None) -> AgentExecutor:
|
||||||
|
try:
|
||||||
|
builder = AgentBuilder(self.toolsets)
|
||||||
|
builder.build_parser()
|
||||||
|
|
||||||
|
callbacks = []
|
||||||
|
eval_callback = EVALCallbackHandler()
|
||||||
|
eval_callback.set_parser(builder.get_parser())
|
||||||
|
callbacks.append(eval_callback)
|
||||||
|
if execution:
|
||||||
|
execution_callback = ExecutionTracingCallbackHandler(execution)
|
||||||
|
execution_callback.set_parser(builder.get_parser())
|
||||||
|
callbacks.append(execution_callback)
|
||||||
|
|
||||||
|
callback_manager = CallbackManager(callbacks)
|
||||||
|
|
||||||
|
builder.build_llm(callback_manager)
|
||||||
|
builder.build_global_tools()
|
||||||
|
|
||||||
|
memory: BaseChatMemory = self.get_or_create_memory(session)
|
||||||
|
tools = [
|
||||||
|
*builder.get_global_tools(),
|
||||||
|
*ToolsFactory.create_per_session_tools(
|
||||||
|
self.toolsets,
|
||||||
|
get_session=lambda: (session, self.executors[session]),
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
for tool in tools:
|
||||||
|
tool.callback_manager = callback_manager
|
||||||
|
|
||||||
|
executor = AgentExecutor.from_agent_and_tools(
|
||||||
|
agent=builder.get_agent(),
|
||||||
|
tools=tools,
|
||||||
|
memory=memory,
|
||||||
|
callback_manager=callback_manager,
|
||||||
|
verbose=True,
|
||||||
|
)
|
||||||
|
self.executors[session] = executor
|
||||||
|
return executor
|
||||||
|
except Exception as e:
|
||||||
|
logging.error(f"Error while creating executor: {str(e)}")
|
||||||
|
raise e
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def create(toolsets: list[BaseToolSet]) -> "AgentManager":
|
||||||
|
if not isinstance(toolsets, list):
|
||||||
|
raise TypeError("Toolsets must be a list")
|
||||||
|
return AgentManager(toolsets=toolsets)
|
@ -1,82 +0,0 @@
|
|||||||
from typing import Dict, Optional
|
|
||||||
# from celery import Task
|
|
||||||
|
|
||||||
from langchain.agents.agent import AgentExecutor
|
|
||||||
from langchain.callbacks.manager import CallbackManager
|
|
||||||
# from langchain.callbacks.base import set_handler
|
|
||||||
from langchain.chains.conversation.memory import ConversationBufferMemory
|
|
||||||
from langchain.memory.chat_memory import BaseChatMemory
|
|
||||||
|
|
||||||
from swarms.tools.main import BaseToolSet, ToolsFactory
|
|
||||||
|
|
||||||
from .builder import AgentBuilder
|
|
||||||
from .callback import EVALCallbackHandler, ExecutionTracingCallbackHandler
|
|
||||||
|
|
||||||
|
|
||||||
CallbackManager.set_handler(handler=EVALCallbackHandler())
|
|
||||||
|
|
||||||
|
|
||||||
class AgentManager:
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
toolsets: list[BaseToolSet] = [],
|
|
||||||
):
|
|
||||||
self.toolsets: list[BaseToolSet] = toolsets
|
|
||||||
self.memories: Dict[str, BaseChatMemory] = {}
|
|
||||||
self.executors: Dict[str, AgentExecutor] = {}
|
|
||||||
|
|
||||||
def create_memory(self) -> BaseChatMemory:
|
|
||||||
return ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
|
||||||
|
|
||||||
def get_or_create_memory(self, session: str) -> BaseChatMemory:
|
|
||||||
if not (session in self.memories):
|
|
||||||
self.memories[session] = self.create_memory()
|
|
||||||
return self.memories[session]
|
|
||||||
|
|
||||||
def create_executor(
|
|
||||||
self, session: str, execution: Optional[Task] = None
|
|
||||||
) -> AgentExecutor:
|
|
||||||
builder = AgentBuilder(self.toolsets)
|
|
||||||
builder.build_parser()
|
|
||||||
|
|
||||||
callbacks = []
|
|
||||||
eval_callback = EVALCallbackHandler()
|
|
||||||
eval_callback.set_parser(builder.get_parser())
|
|
||||||
callbacks.append(eval_callback)
|
|
||||||
if execution:
|
|
||||||
execution_callback = ExecutionTracingCallbackHandler(execution)
|
|
||||||
execution_callback.set_parser(builder.get_parser())
|
|
||||||
callbacks.append(execution_callback)
|
|
||||||
|
|
||||||
callback_manager = CallbackManager(callbacks)
|
|
||||||
|
|
||||||
builder.build_llm(callback_manager)
|
|
||||||
builder.build_global_tools()
|
|
||||||
|
|
||||||
memory: BaseChatMemory = self.get_or_create_memory(session)
|
|
||||||
tools = [
|
|
||||||
*builder.get_global_tools(),
|
|
||||||
*ToolsFactory.create_per_session_tools(
|
|
||||||
self.toolsets,
|
|
||||||
get_session=lambda: (session, self.executors[session]),
|
|
||||||
),
|
|
||||||
]
|
|
||||||
|
|
||||||
for tool in tools:
|
|
||||||
tool.callback_manager = callback_manager
|
|
||||||
|
|
||||||
executor = AgentExecutor.from_agent_and_tools(
|
|
||||||
agent=builder.get_agent(),
|
|
||||||
tools=tools,
|
|
||||||
memory=memory,
|
|
||||||
callback_manager=callback_manager,
|
|
||||||
verbose=True,
|
|
||||||
)
|
|
||||||
self.executors[session] = executor
|
|
||||||
return executor
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def create(toolsets: list[BaseToolSet]) -> "AgentManager":
|
|
||||||
return AgentManager(
|
|
||||||
toolsets=toolsets,
|
|
||||||
)
|
|
Loading…
Reference in new issue