pull/210/head
Kye 1 year ago
parent 3ce18d73d6
commit df59d3642e

@ -96,7 +96,7 @@ nav:
- swarms.structs: - swarms.structs:
- Overview: "swarms/structs/overview.md" - Overview: "swarms/structs/overview.md"
- AutoScaler: "swarms/swarms/autoscaler.md" - AutoScaler: "swarms/swarms/autoscaler.md"
- Flow: "swarms/structs/flow.md" - Agent: "swarms/structs/agent.md"
- SequentialWorkflow: 'swarms/structs/sequential_workflow.md' - SequentialWorkflow: 'swarms/structs/sequential_workflow.md'
- swarms.memory: - swarms.memory:
- PineconeVectorStoreStore: "swarms/memory/pinecone.md" - PineconeVectorStoreStore: "swarms/memory/pinecone.md"

@ -54,7 +54,7 @@ def generate_treatment_plan(diagnosis):
xray_image_path = "playground/demos/xray/xray2.jpg" xray_image_path = "playground/demos/xray/xray2.jpg"
# Diagnosis # Diagnosis
diagnosis = analyze_xray_agent.run( diagnosis = analyze_xray_agent.run(
task="Analyze the following XRAY", img=xray_image_path task="Analyze the following XRAY", img=xray_image_path
) )

@ -6,6 +6,23 @@ from qdrant_client.http.models import Distance, VectorParams, PointStruct
class Qdrant: class Qdrant:
"""
Qdrant class for managing collections and performing vector operations using QdrantClient.
Attributes:
client (QdrantClient): The Qdrant client for interacting with the Qdrant server.
collection_name (str): Name of the collection to be managed in Qdrant.
model (SentenceTransformer): The model used for generating sentence embeddings.
Args:
api_key (str): API key for authenticating with Qdrant.
host (str): Host address of the Qdrant server.
port (int): Port number of the Qdrant server. Defaults to 6333.
collection_name (str): Name of the collection to be used or created. Defaults to "qdrant".
model_name (str): Name of the model to be used for embeddings. Defaults to "BAAI/bge-small-en-v1.5".
https (bool): Flag to indicate if HTTPS should be used. Defaults to True.
"""
def __init__( def __init__(
self, self,
api_key: str, api_key: str,
@ -15,22 +32,6 @@ class Qdrant:
model_name: str = "BAAI/bge-small-en-v1.5", model_name: str = "BAAI/bge-small-en-v1.5",
https: bool = True, https: bool = True,
): ):
"""
Qdrant class for managing collections and performing vector operations using QdrantClient.
Attributes:
client (QdrantClient): The Qdrant client for interacting with the Qdrant server.
collection_name (str): Name of the collection to be managed in Qdrant.
model (SentenceTransformer): The model used for generating sentence embeddings.
Args:
api_key (str): API key for authenticating with Qdrant.
host (str): Host address of the Qdrant server.
port (int): Port number of the Qdrant server. Defaults to 6333.
collection_name (str): Name of the collection to be used or created. Defaults to "qdrant".
model_name (str): Name of the model to be used for embeddings. Defaults to "BAAI/bge-small-en-v1.5".
https (bool): Flag to indicate if HTTPS should be used. Defaults to True.
"""
try: try:
self.client = QdrantClient(url=host, port=port, api_key=api_key) self.client = QdrantClient(url=host, port=port, api_key=api_key)
self.collection_name = collection_name self.collection_name = collection_name

@ -15,6 +15,7 @@ from swarms.utils.parse_code import extract_code_in_backticks_in_string
from swarms.prompts.multi_modal_autonomous_instruction_prompt import ( from swarms.prompts.multi_modal_autonomous_instruction_prompt import (
MULTI_MODAL_AUTO_AGENT_SYSTEM_PROMPT_1, MULTI_MODAL_AUTO_AGENT_SYSTEM_PROMPT_1,
) )
from swarms.utils.pdf_to_text import pdf_to_text
# System prompt # System prompt
FLOW_SYSTEM_PROMPT = f""" FLOW_SYSTEM_PROMPT = f"""
@ -252,6 +253,10 @@ class Agent:
self_healing_enabled: Optional[bool] = False, self_healing_enabled: Optional[bool] = False,
code_interpreter: Optional[bool] = False, code_interpreter: Optional[bool] = False,
multi_modal: Optional[bool] = None, multi_modal: Optional[bool] = None,
pdf_path: Optional[str] = None,
list_of_pdf: Optional[str] = None,
tokenizer: Optional[str] = None,
*args,
**kwargs: Any, **kwargs: Any,
): ):
self.llm = llm self.llm = llm
@ -282,6 +287,9 @@ class Agent:
self.self_healing_enabled = self_healing_enabled self.self_healing_enabled = self_healing_enabled
self.code_interpreter = code_interpreter self.code_interpreter = code_interpreter
self.multi_modal = multi_modal self.multi_modal = multi_modal
self.pdf_path = pdf_path
self.list_of_pdf = list_of_pdf
self.tokenizer = tokenizer
# The max_loops will be set dynamically if the dynamic_loop # The max_loops will be set dynamically if the dynamic_loop
if self.dynamic_loops: if self.dynamic_loops:
@ -351,10 +359,6 @@ class Agent:
return "\n".join(params_str_list) return "\n".join(params_str_list)
# def parse_tool_command(self, text: str):
# # Parse the text for tool usage
# pass
def get_tool_description(self): def get_tool_description(self):
"""Get the tool description""" """Get the tool description"""
if self.tools: if self.tools:
@ -1111,6 +1115,31 @@ class Agent:
run_code = self.code_executor.run(parsed_code) run_code = self.code_executor.run(parsed_code)
return run_code return run_code
def pdf_connector(self, pdf: str = None):
"""Transforms the pdf into text
Args:
pdf (str, optional): _description_. Defaults to None.
Returns:
_type_: _description_
"""
pdf = pdf or self.pdf_path
text = pdf_to_text(pdf)
return text
def pdf_chunker(self, text: str = None):
"""Chunk the pdf into sentences
Args:
text (str, optional): _description_. Defaults to None.
Returns:
_type_: _description_
"""
text = text or self.pdf_connector()
pass
def tools_prompt_prep(self, docs: str = None, scenarios: str = None): def tools_prompt_prep(self, docs: str = None, scenarios: str = None):
""" """
Prepare the tool prompt Prepare the tool prompt

Loading…
Cancel
Save