[MIGRATION][Migrate SwarmMatcher, JsonFormer, and other packages and modules to a new package called swarms-utils to remove torch and transformers depedency] [next need to do numpy]

pull/1102/head
Kye Gomez 2 weeks ago
parent f14b282a27
commit e0da12be90

@ -47567,7 +47567,8 @@ flowchart TD
SwarmMatcher is included in the Swarms package. To use it, simply import it from the library:
```python
from swarms.structs.swarm_matcher import SwarmMatcher, SwarmMatcherConfig, SwarmType
from swarms_utils.swarm_matcher import SwarmMatcher, SwarmMatcherConfig, SwarmType
```
## Basic Usage
@ -47585,7 +47586,8 @@ print(f"Selected swarm type: {swarm_type}")
For more control over the matching process, you can create and configure your own SwarmMatcher instance:
```python
from swarms.structs.swarm_matcher import SwarmMatcher, SwarmMatcherConfig, SwarmType, initialize_swarm_types
from swarms_utils.swarm_matcher import SwarmMatcher, SwarmMatcherConfig, SwarmType
, initialize_swarm_types
# Create a configuration
config = SwarmMatcherConfig(
@ -47745,7 +47747,8 @@ for task in tasks:
### Custom Swarm Types
```python
from swarms.structs.swarm_matcher import SwarmMatcher, SwarmMatcherConfig, SwarmType
from swarms_utils.swarm_matcher import SwarmMatcher, SwarmMatcherConfig, SwarmType
# Create configuration and matcher
config = SwarmMatcherConfig()

@ -32,7 +32,8 @@ flowchart TD
SwarmMatcher is included in the Swarms package. To use it, simply import it from the library:
```python
from swarms.structs.swarm_matcher import SwarmMatcher, SwarmMatcherConfig, SwarmType
from swarms_utils.swarm_matcher import SwarmMatcher, SwarmMatcherConfig, SwarmType
```
## Basic Usage
@ -50,7 +51,8 @@ print(f"Selected swarm type: {swarm_type}")
For more control over the matching process, you can create and configure your own SwarmMatcher instance:
```python
from swarms.structs.swarm_matcher import SwarmMatcher, SwarmMatcherConfig, SwarmType, initialize_swarm_types
from swarms_utils.swarm_matcher import SwarmMatcher, SwarmMatcherConfig, SwarmType
, initialize_swarm_types
# Create a configuration
config = SwarmMatcherConfig(
@ -210,7 +212,8 @@ for task in tasks:
### Custom Swarm Types
```python
from swarms.structs.swarm_matcher import SwarmMatcher, SwarmMatcherConfig, SwarmType
from swarms_utils.swarm_matcher import SwarmMatcher, SwarmMatcherConfig, SwarmType
# Create configuration and matcher
config = SwarmMatcherConfig()

@ -8,8 +8,7 @@ agent = Agent(
dynamic_temperature_enabled=True,
max_loops=1,
dynamic_context_window=True,
streaming_on=False,
print_on=False,
streaming_on=True,
)
out = agent.run(

@ -5,7 +5,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry]
name = "swarms"
version = "8.3.0"
version = "8.3.1"
description = "Swarms - TGSC"
license = "MIT"
authors = ["Kye Gomez <kye@apac.ai>"]
@ -57,8 +57,6 @@ classifiers = [
[tool.poetry.dependencies]
python = ">=3.10,<4.0"
# torch = ">=2.1.1,<3.0"
# transformers = ">= 4.39.0, <5.0.0"
setuptools = "*"
asyncio = ">=3.4.3,<5.0"
toml = "*"
@ -75,7 +73,6 @@ aiofiles = "*"
rich = "*"
numpy = "*"
litellm = "*"
torch = "*"
httpx = "*"
mcp = "*"
openai = "*"

@ -1,5 +1,3 @@
torch>=2.1.1,<3.0
transformers>=4.39.0,<4.51.0
asyncio>=3.4.3,<5.0
toml
pypdf==5.1.0

@ -1,256 +0,0 @@
from typing import List, Optional, Dict, Any, Callable
from loguru import logger
from swarms.agents.exceptions import (
ToolExecutionError,
ToolValidationError,
ToolNotFoundError,
ToolParameterError,
)
class ToolAgent:
"""
A wrapper class for vLLM that provides a similar interface to LiteLLM.
This class handles model initialization and inference using vLLM.
"""
def __init__(
self,
model_name: str = "meta-llama/Llama-2-7b-chat-hf",
system_prompt: Optional[str] = None,
stream: bool = False,
temperature: float = 0.5,
max_tokens: int = 4000,
max_completion_tokens: int = 4000,
tools_list_dictionary: Optional[List[Dict[str, Any]]] = None,
tool_choice: str = "auto",
parallel_tool_calls: bool = False,
retry_attempts: int = 3,
retry_interval: float = 1.0,
*args,
**kwargs,
):
"""
Initialize the vLLM wrapper with the given parameters.
Args:
model_name (str): The name of the model to use. Defaults to "meta-llama/Llama-2-7b-chat-hf".
system_prompt (str, optional): The system prompt to use. Defaults to None.
stream (bool): Whether to stream the output. Defaults to False.
temperature (float): The temperature for sampling. Defaults to 0.5.
max_tokens (int): The maximum number of tokens to generate. Defaults to 4000.
max_completion_tokens (int): The maximum number of completion tokens. Defaults to 4000.
tools_list_dictionary (List[Dict[str, Any]], optional): List of available tools. Defaults to None.
tool_choice (str): How to choose tools. Defaults to "auto".
parallel_tool_calls (bool): Whether to allow parallel tool calls. Defaults to False.
retry_attempts (int): Number of retry attempts for failed operations. Defaults to 3.
retry_interval (float): Time to wait between retries in seconds. Defaults to 1.0.
"""
self.model_name = model_name
self.system_prompt = system_prompt
self.stream = stream
self.temperature = temperature
self.max_tokens = max_tokens
self.max_completion_tokens = max_completion_tokens
self.tools_list_dictionary = tools_list_dictionary
self.tool_choice = tool_choice
self.parallel_tool_calls = parallel_tool_calls
self.retry_attempts = retry_attempts
self.retry_interval = retry_interval
# Initialize vLLM
try:
self.llm = LLM(model=model_name, **kwargs)
self.sampling_params = SamplingParams(
temperature=temperature,
max_tokens=max_tokens,
)
except Exception as e:
raise ToolExecutionError(
"model_initialization",
e,
{"model_name": model_name, "kwargs": kwargs},
)
def _validate_tool(
self, tool_name: str, parameters: Dict[str, Any]
) -> None:
"""
Validate tool parameters before execution.
Args:
tool_name (str): Name of the tool to validate
parameters (Dict[str, Any]): Parameters to validate
Raises:
ToolValidationError: If validation fails
"""
if not self.tools_list_dictionary:
raise ToolValidationError(
tool_name,
"parameters",
"No tools available for validation",
)
tool_spec = next(
(
tool
for tool in self.tools_list_dictionary
if tool["name"] == tool_name
),
None,
)
if not tool_spec:
raise ToolNotFoundError(tool_name)
required_params = {
param["name"]
for param in tool_spec["parameters"]
if param.get("required", True)
}
missing_params = required_params - set(parameters.keys())
if missing_params:
raise ToolParameterError(
tool_name,
f"Missing required parameters: {', '.join(missing_params)}",
)
def _execute_with_retry(
self, func: Callable, *args, **kwargs
) -> Any:
"""
Execute a function with retry logic.
Args:
func (Callable): Function to execute
*args: Positional arguments for the function
**kwargs: Keyword arguments for the function
Returns:
Any: Result of the function execution
Raises:
ToolExecutionError: If all retry attempts fail
"""
last_error = None
for attempt in range(self.retry_attempts):
try:
return func(*args, **kwargs)
except Exception as e:
last_error = e
logger.warning(
f"Attempt {attempt + 1}/{self.retry_attempts} failed: {str(e)}"
)
if attempt < self.retry_attempts - 1:
time.sleep(self.retry_interval)
raise ToolExecutionError(
func.__name__,
last_error,
{"attempts": self.retry_attempts},
)
def run(self, task: str, *args, **kwargs) -> str:
"""
Run the tool agent for the specified task.
Args:
task (str): The task to be performed by the tool agent.
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Returns:
The output of the tool agent.
Raises:
ToolExecutionError: If an error occurs during execution.
"""
try:
if not self.llm:
raise ToolExecutionError(
"run",
Exception("LLM not initialized"),
{"task": task},
)
logger.info(f"Running task: {task}")
# Prepare the prompt
prompt = self._prepare_prompt(task)
# Execute with retry logic
outputs = self._execute_with_retry(
self.llm.generate, prompt, self.sampling_params
)
response = outputs[0].outputs[0].text.strip()
return response
except Exception as error:
logger.error(f"Error running task: {error}")
raise ToolExecutionError(
"run",
error,
{"task": task, "args": args, "kwargs": kwargs},
)
def _prepare_prompt(self, task: str) -> str:
"""
Prepare the prompt for the given task.
Args:
task (str): The task to prepare the prompt for.
Returns:
str: The prepared prompt.
"""
if self.system_prompt:
return f"{self.system_prompt}\n\nUser: {task}\nAssistant:"
return f"User: {task}\nAssistant:"
def __call__(self, task: str, *args, **kwargs) -> str:
"""
Call the model for the given task.
Args:
task (str): The task to run the model for.
*args: Additional positional arguments.
**kwargs: Additional keyword arguments.
Returns:
str: The model's response.
"""
return self.run(task, *args, **kwargs)
def batched_run(
self, tasks: List[str], batch_size: int = 10
) -> List[str]:
"""
Run the model for multiple tasks in batches.
Args:
tasks (List[str]): List of tasks to run.
batch_size (int): Size of each batch. Defaults to 10.
Returns:
List[str]: List of model responses.
Raises:
ToolExecutionError: If an error occurs during batch execution.
"""
logger.info(
f"Running tasks in batches of size {batch_size}. Total tasks: {len(tasks)}"
)
results = []
try:
for i in range(0, len(tasks), batch_size):
batch = tasks[i : i + batch_size]
for task in batch:
logger.info(f"Running task: {task}")
try:
result = self.run(task)
results.append(result)
except ToolExecutionError as e:
logger.error(
f"Failed to execute task '{task}': {e}"
)
results.append(f"Error: {str(e)}")
continue
logger.info("Completed all tasks.")
return results
except Exception as error:
logger.error(f"Error in batch execution: {error}")
raise ToolExecutionError(
"batched_run",
error,
{"tasks": tasks, "batch_size": batch_size},
)

@ -1,599 +0,0 @@
import json
from typing import List, Optional, Tuple
import numpy as np
from pydantic import BaseModel, Field
from tenacity import retry, stop_after_attempt, wait_exponential
from swarms.utils.loguru_logger import initialize_logger
logger = initialize_logger(log_folder="swarm_matcher")
class SwarmType(BaseModel):
name: str
description: str
embedding: Optional[List[float]] = Field(
default=None, exclude=True
)
class SwarmMatcherConfig(BaseModel):
model_name: str = "sentence-transformers/all-MiniLM-L6-v2"
embedding_dim: int = (
512 # Dimension of the sentence-transformers model
)
class SwarmMatcher:
"""
A class for matching tasks to swarm types based on their descriptions.
It utilizes a transformer model to generate embeddings for task and swarm type descriptions,
and then calculates the dot product to find the best match.
"""
def __init__(self, config: SwarmMatcherConfig):
"""
Initializes the SwarmMatcher with a configuration.
Args:
config (SwarmMatcherConfig): The configuration for the SwarmMatcher.
"""
logger.add("swarm_matcher_debug.log", level="DEBUG")
logger.debug("Initializing SwarmMatcher")
try:
import torch
except ImportError:
raise ImportError(
"torch package not found. Pip install torch."
)
try:
import transformers
except ImportError:
raise ImportError(
"transformers package not found. Pip install transformers."
)
self.torch = torch
try:
self.config = config
self.tokenizer = (
transformers.AutoTokenizer.from_pretrained(
config.model_name
)
)
self.model = transformers.AutoModel.from_pretrained(
config.model_name
)
self.swarm_types: List[SwarmType] = []
logger.debug("SwarmMatcher initialized successfully")
except Exception as e:
logger.error(f"Error initializing SwarmMatcher: {str(e)}")
raise
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
)
def get_embedding(self, text: str) -> np.ndarray:
"""
Generates an embedding for a given text using the configured model.
Args:
text (str): The text for which to generate an embedding.
Returns:
np.ndarray: The embedding vector for the text.
"""
logger.debug(f"Getting embedding for text: {text[:50]}...")
try:
inputs = self.tokenizer(
text,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512,
)
with self.torch.no_grad():
outputs = self.model(**inputs)
embedding = (
outputs.last_hidden_state.mean(dim=1)
.squeeze()
.numpy()
)
logger.debug("Embedding generated successfully")
return embedding
except Exception as e:
logger.error(f"Error generating embedding: {str(e)}")
raise
def add_swarm_type(self, swarm_type: SwarmType):
"""
Adds a swarm type to the list of swarm types, generating an embedding for its description.
Args:
swarm_type (SwarmType): The swarm type to add.
"""
logger.debug(f"Adding swarm type: {swarm_type.name}")
try:
embedding = self.get_embedding(swarm_type.description)
swarm_type.embedding = embedding.tolist()
self.swarm_types.append(swarm_type)
logger.info(f"Added swarm type: {swarm_type.name}")
except Exception as e:
logger.error(
f"Error adding swarm type {swarm_type.name}: {str(e)}"
)
raise
def find_best_match(self, task: str) -> Tuple[str, float]:
"""
Finds the best match for a given task among the registered swarm types.
Args:
task (str): The task for which to find the best match.
Returns:
Tuple[str, float]: A tuple containing the name of the best matching swarm type and the score.
"""
logger.debug(f"Finding best match for task: {task[:50]}...")
try:
task_embedding = self.get_embedding(task)
best_match = None
best_score = -float("inf")
for swarm_type in self.swarm_types:
score = np.dot(
task_embedding, np.array(swarm_type.embedding)
)
if score > best_score:
best_score = score
best_match = swarm_type
logger.info(
f"Best match for task: {best_match.name} (score: {best_score})"
)
return best_match.name, float(best_score)
except Exception as e:
logger.error(
f"Error finding best match for task: {str(e)}"
)
raise
def auto_select_swarm(self, task: str) -> str:
"""
Automatically selects the best swarm type for a given task based on their descriptions.
Args:
task (str): The task for which to select a swarm type.
Returns:
str: The name of the selected swarm type.
"""
logger.debug(f"Auto-selecting swarm for task: {task[:50]}...")
best_match, score = self.find_best_match(task)
logger.info(f"Task: {task}")
logger.info(f"Selected Swarm Type: {best_match}")
logger.info(f"Confidence Score: {score:.2f}")
return best_match
def run_multiple(self, tasks: List[str], *args, **kwargs) -> str:
swarms = []
for task in tasks:
output = self.auto_select_swarm(task)
# Append
swarms.append(output)
return swarms
def save_swarm_types(self, filename: str):
"""
Saves the registered swarm types to a JSON file.
Args:
filename (str): The name of the file to which to save the swarm types.
"""
try:
with open(filename, "w") as f:
json.dump([st.dict() for st in self.swarm_types], f)
logger.info(f"Saved swarm types to {filename}")
except Exception as e:
logger.error(f"Error saving swarm types: {str(e)}")
raise
def load_swarm_types(self, filename: str):
"""
Loads swarm types from a JSON file.
Args:
filename (str): The name of the file from which to load the swarm types.
"""
try:
with open(filename, "r") as f:
swarm_types_data = json.load(f)
self.swarm_types = [
SwarmType(**st) for st in swarm_types_data
]
logger.info(f"Loaded swarm types from {filename}")
except Exception as e:
logger.error(f"Error loading swarm types: {str(e)}")
raise
def initialize_swarm_types(matcher: SwarmMatcher):
logger.debug("Initializing swarm types")
swarm_types = [
SwarmType(
name="AgentRearrange",
description="Optimize agent order and rearrange flow for multi-step tasks, ensuring efficient task allocation and minimizing bottlenecks. Keywords: orchestration, coordination, pipeline optimization, task scheduling, resource allocation, workflow management, agent organization, process optimization",
),
SwarmType(
name="MixtureOfAgents",
description="Combine diverse expert agents for comprehensive analysis, fostering a collaborative approach to problem-solving and leveraging individual strengths. Keywords: multi-agent system, expert collaboration, distributed intelligence, collective problem solving, agent specialization, team coordination, hybrid approaches, knowledge synthesis",
),
SwarmType(
name="SpreadSheetSwarm",
description="Collaborative data processing and analysis in a spreadsheet-like environment, facilitating real-time data sharing and visualization. Keywords: data analysis, tabular processing, collaborative editing, data transformation, spreadsheet operations, data visualization, real-time collaboration, structured data",
),
SwarmType(
name="SequentialWorkflow",
description="Execute tasks in a step-by-step, sequential process workflow, ensuring a logical and methodical approach to task execution. Keywords: linear processing, waterfall methodology, step-by-step execution, ordered tasks, sequential operations, process flow, systematic approach, staged execution",
),
SwarmType(
name="ConcurrentWorkflow",
description="Process multiple tasks or data sources concurrently in parallel, maximizing productivity and reducing processing time. Keywords: parallel processing, multi-threading, asynchronous execution, distributed computing, concurrent operations, simultaneous tasks, parallel workflows, scalable processing",
),
SwarmType(
name="HierarchicalSwarm",
description="Organize agents in a hierarchical structure with clear reporting lines and delegation of responsibilities. Keywords: management hierarchy, organizational structure, delegation, supervision, chain of command, tiered organization, structured coordination",
),
# SwarmType(
# name="AdaptiveSwarm",
# description="Dynamically adjust agent behavior and swarm configuration based on task requirements and performance feedback. Keywords: dynamic adaptation, self-optimization, feedback loops, learning systems, flexible configuration, responsive behavior, adaptive algorithms",
# ),
# SwarmType(
# name="ConsensusSwarm",
# description="Achieve group decisions through consensus mechanisms and voting protocols among multiple agents. Keywords: group decision making, voting systems, collective intelligence, agreement protocols, democratic processes, collaborative decisions",
# ),
]
for swarm_type in swarm_types:
matcher.add_swarm_type(swarm_type)
logger.debug("Swarm types initialized")
def swarm_matcher(task: str, *args, **kwargs):
"""
Runs the SwarmMatcher example with predefined tasks and swarm types.
"""
config = SwarmMatcherConfig()
matcher = SwarmMatcher(config)
initialize_swarm_types(matcher)
# matcher.save_swarm_types(f"swarm_logs/{uuid4().hex}.json")
swarm_type = matcher.auto_select_swarm(task)
logger.info(f"{swarm_type}")
return swarm_type
# from typing import List, Tuple, Dict
# from pydantic import BaseModel, Field
# from loguru import logger
# from uuid import uuid4
# import chromadb
# import json
# from tenacity import retry, stop_after_attempt, wait_exponential
# class SwarmType(BaseModel):
# """A swarm type with its name, description and optional metadata"""
# id: str = Field(default_factory=lambda: str(uuid4()))
# name: str
# description: str
# metadata: Dict = Field(default_factory=dict)
# class SwarmMatcherConfig(BaseModel):
# """Configuration for the SwarmMatcher"""
# collection_name: str = "swarm_types"
# distance_metric: str = "cosine" # or "l2" or "ip"
# embedding_function: str = (
# "sentence-transformers/all-mpnet-base-v2" # Better model than MiniLM
# )
# persist_directory: str = "./chroma_db"
# class SwarmMatcher:
# """
# An improved swarm matcher that uses ChromaDB for better vector similarity search.
# Features:
# - Persistent storage of embeddings
# - Better vector similarity search with multiple distance metrics
# - Improved embedding model
# - Metadata filtering capabilities
# - Batch operations support
# """
# def __init__(self, config: SwarmMatcherConfig):
# """Initialize the improved swarm matcher"""
# logger.add("swarm_matcher.log", rotation="100 MB")
# self.config = config
# # Initialize ChromaDB client with persistence
# self.chroma_client = chromadb.Client()
# # Get or create collection
# try:
# self.collection = self.chroma_client.get_collection(
# name=config.collection_name,
# )
# except ValueError:
# self.collection = self.chroma_client.create_collection(
# name=config.collection_name,
# metadata={"hnsw:space": config.distance_metric},
# )
# logger.info(
# f"Initialized SwarmMatcher with collection '{config.collection_name}'"
# )
# def add_swarm_type(self, swarm_type: SwarmType) -> None:
# """Add a single swarm type to the collection"""
# try:
# self.collection.add(
# ids=[swarm_type.id],
# documents=[swarm_type.description],
# metadatas=[
# {"name": swarm_type.name, **swarm_type.metadata}
# ],
# )
# logger.info(f"Added swarm type: {swarm_type.name}")
# except Exception as e:
# logger.error(
# f"Error adding swarm type {swarm_type.name}: {str(e)}"
# )
# raise
# def add_swarm_types(self, swarm_types: List[SwarmType]) -> None:
# """Add multiple swarm types in batch"""
# try:
# self.collection.add(
# ids=[st.id for st in swarm_types],
# documents=[st.description for st in swarm_types],
# metadatas=[
# {"name": st.name, **st.metadata}
# for st in swarm_types
# ],
# )
# logger.info(f"Added {len(swarm_types)} swarm types")
# except Exception as e:
# logger.error(
# f"Error adding swarm types in batch: {str(e)}"
# )
# raise
# @retry(
# stop=stop_after_attempt(3),
# wait=wait_exponential(multiplier=1, min=4, max=10),
# )
# def find_best_matches(
# self,
# task: str,
# n_results: int = 3,
# score_threshold: float = 0.7,
# ) -> List[Tuple[str, float]]:
# """
# Find the best matching swarm types for a given task
# Returns multiple matches with their scores
# """
# try:
# results = self.collection.query(
# query_texts=[task],
# n_results=n_results,
# include=["metadatas", "distances"],
# )
# matches = []
# for metadata, distance in zip(
# results["metadatas"][0], results["distances"][0]
# ):
# # Convert distance to similarity score (1 - normalized_distance)
# score = 1 - (
# distance / 2
# ) # Normalize cosine distance to [0,1]
# if score >= score_threshold:
# matches.append((metadata["name"], score))
# logger.info(f"Found {len(matches)} matches for task")
# return matches
# except Exception as e:
# logger.error(f"Error finding matches for task: {str(e)}")
# raise
# def auto_select_swarm(self, task: str) -> str:
# """
# Automatically select the best swarm type for a task
# Returns only the top match
# """
# matches = self.find_best_matches(task, n_results=1)
# if not matches:
# logger.warning("No suitable matches found for task")
# return "SequentialWorkflow" # Default fallback
# best_match, score = matches[0]
# logger.info(
# f"Selected swarm type '{best_match}' with confidence {score:.3f}"
# )
# return best_match
# def run_multiple(self, tasks: List[str]) -> List[str]:
# """Process multiple tasks in batch"""
# return [self.auto_select_swarm(task) for task in tasks]
# def save_swarm_types(self, filename: str) -> None:
# """Export swarm types to JSON"""
# try:
# all_data = self.collection.get(
# include=["metadatas", "documents"]
# )
# swarm_types = [
# SwarmType(
# id=id_,
# name=metadata["name"],
# description=document,
# metadata={
# k: v
# for k, v in metadata.items()
# if k != "name"
# },
# )
# for id_, metadata, document in zip(
# all_data["ids"],
# all_data["metadatas"],
# all_data["documents"],
# )
# ]
# with open(filename, "w") as f:
# json.dump(
# [st.dict() for st in swarm_types], f, indent=2
# )
# logger.info(f"Saved swarm types to {filename}")
# except Exception as e:
# logger.error(f"Error saving swarm types: {str(e)}")
# raise
# def load_swarm_types(self, filename: str) -> None:
# """Import swarm types from JSON"""
# try:
# with open(filename, "r") as f:
# swarm_types_data = json.load(f)
# swarm_types = [SwarmType(**st) for st in swarm_types_data]
# self.add_swarm_types(swarm_types)
# logger.info(f"Loaded swarm types from {filename}")
# except Exception as e:
# logger.error(f"Error loading swarm types: {str(e)}")
# raise
# def initialize_default_swarm_types(matcher: SwarmMatcher) -> None:
# """Initialize the matcher with default swarm types"""
# swarm_types = [
# SwarmType(
# name="AgentRearrange",
# description="""
# Optimize agent order and rearrange flow for multi-step tasks, ensuring efficient task allocation
# and minimizing bottlenecks. Specialized in orchestration, coordination, pipeline optimization,
# task scheduling, resource allocation, workflow management, agent organization, and process optimization.
# Best for tasks requiring complex agent interactions and workflow optimization.
# """,
# metadata={
# "category": "optimization",
# "complexity": "high",
# },
# ),
# SwarmType(
# name="MixtureOfAgents",
# description="""
# Combine diverse expert agents for comprehensive analysis, fostering a collaborative approach
# to problem-solving and leveraging individual strengths. Focuses on multi-agent systems,
# expert collaboration, distributed intelligence, collective problem solving, agent specialization,
# team coordination, hybrid approaches, and knowledge synthesis. Ideal for complex problems
# requiring multiple areas of expertise.
# """,
# metadata={
# "category": "collaboration",
# "complexity": "high",
# },
# ),
# SwarmType(
# name="SpreadSheetSwarm",
# description="""
# Collaborative data processing and analysis in a spreadsheet-like environment, facilitating
# real-time data sharing and visualization. Specializes in data analysis, tabular processing,
# collaborative editing, data transformation, spreadsheet operations, data visualization,
# real-time collaboration, and structured data handling. Perfect for data-intensive tasks
# requiring structured analysis.
# """,
# metadata={
# "category": "data_processing",
# "complexity": "medium",
# },
# ),
# SwarmType(
# name="SequentialWorkflow",
# description="""
# Execute tasks in a step-by-step, sequential process workflow, ensuring a logical and methodical
# approach to task execution. Focuses on linear processing, waterfall methodology, step-by-step
# execution, ordered tasks, sequential operations, process flow, systematic approach, and staged
# execution. Best for tasks requiring strict order and dependencies.
# """,
# metadata={"category": "workflow", "complexity": "low"},
# ),
# SwarmType(
# name="ConcurrentWorkflow",
# description="""
# Process multiple tasks or data sources concurrently in parallel, maximizing productivity
# and reducing processing time. Specializes in parallel processing, multi-threading,
# asynchronous execution, distributed computing, concurrent operations, simultaneous tasks,
# parallel workflows, and scalable processing. Ideal for independent tasks that can be
# processed simultaneously.
# """,
# metadata={"category": "workflow", "complexity": "medium"},
# ),
# ]
# matcher.add_swarm_types(swarm_types)
# logger.info("Initialized default swarm types")
# def create_swarm_matcher(
# persist_dir: str = "./chroma_db",
# collection_name: str = "swarm_types",
# ) -> SwarmMatcher:
# """Convenience function to create and initialize a swarm matcher"""
# config = SwarmMatcherConfig(
# persist_directory=persist_dir, collection_name=collection_name
# )
# matcher = SwarmMatcher(config)
# initialize_default_swarm_types(matcher)
# return matcher
# # Example usage
# def swarm_matcher(task: str) -> str:
# # Create and initialize matcher
# matcher = create_swarm_matcher()
# swarm_type = matcher.auto_select_swarm(task)
# print(f"Task: {task}\nSelected Swarm: {swarm_type}\n")
# return swarm_type
# # # Example usage
# # if __name__ == "__main__":
# # # Create and initialize matcher
# # matcher = create_swarm_matcher()
# # # Example tasks
# # tasks = [
# # "Analyze this spreadsheet of sales data and create visualizations",
# # "Coordinate multiple AI agents to solve a complex problem",
# # "Process these tasks one after another in a specific order",
# # "Write multiple blog posts about the latest advancements in swarm intelligence all at once",
# # "Write a blog post about the latest advancements in swarm intelligence",
# # ]
# # # Process tasks
# # for task in tasks:
# # swarm_type = matcher.auto_select_swarm(task)
# # print(f"Task: {task}\nSelected Swarm: {swarm_type}\n")

@ -24,7 +24,6 @@ from swarms.structs.malt import MALT
from swarms.structs.mixture_of_agents import MixtureOfAgents
from swarms.structs.multi_agent_router import MultiAgentRouter
from swarms.structs.sequential_workflow import SequentialWorkflow
from swarms.structs.swarm_matcher import swarm_matcher
from swarms.telemetry.log_executions import log_execution
from swarms.utils.generate_keys import generate_api_key
from swarms.utils.loguru_logger import initialize_logger
@ -574,19 +573,6 @@ class SwarmRouter:
Raises:
ValueError: If an invalid swarm type is provided.
"""
# Handle auto swarm type selection
if self.swarm_type == "auto":
try:
matched_swarm_type = str(swarm_matcher(task))
self.swarm_type = matched_swarm_type
logger.info(
f"Auto-selected swarm type: {matched_swarm_type}"
)
except Exception as e:
logger.warning(
f"Auto-selection failed: {e}, falling back to SequentialWorkflow"
)
self.swarm_type = "SequentialWorkflow"
# Check cache first for better performance
cache_key = (

@ -1,421 +0,0 @@
import json
from typing import Any, Dict, List, Union
from pydantic import BaseModel
from swarms.tools.logits_processor import (
NumberStoppingCriteria,
OutputNumbersTokens,
StringStoppingCriteria,
)
from swarms.utils.auto_download_check_packages import (
auto_check_and_download_package,
)
try:
import transformers
except ImportError:
auto_check_and_download_package(
"transformers", package_manager="pip"
)
import transformers
GENERATION_MARKER = "|GENERATION|"
class Jsonformer:
"""
Initializes the FormatTools class.
Args:
model (PreTrainedModel): The pre-trained model.
tokenizer (PreTrainedTokenizer): The tokenizer for the model.
json_schema (Dict[str, Any]): The JSON schema.
prompt (str): The prompt for generation.
Keyword Args:
debug (bool, optional): Whether to enable debug mode. Defaults to False.
max_array_length (int, optional): The maximum length of an array. Defaults to 10.
max_number_tokens (int, optional): The maximum number of tokens for numbers. Defaults to 6.
temperature (float, optional): The temperature for generation. Defaults to 1.0.
max_string_token_length (int, optional): The maximum length of a string token. Defaults to 10.
"""
value: Dict[str, Any] = {}
def __init__(
self,
model: transformers.PreTrainedModel = None, # type: ignore
tokenizer: transformers.PreTrainedTokenizer = None, # type: ignore
json_schema: Union[Dict[str, Any], BaseModel] = None,
schemas: List[Union[Dict[str, Any], BaseModel]] = [],
prompt: str = None,
*,
debug: bool = False,
max_array_length: int = 10,
max_number_tokens: int = 6,
temperature: float = 1.0,
max_string_token_length: int = 10,
llm: Any = None,
):
self.model = model
self.tokenizer = tokenizer
self.json_schema = json_schema
self.prompt = prompt
self.llm = llm
self.schemas = schemas
self.number_logit_processor = OutputNumbersTokens(
self.tokenizer, self.prompt
)
self.generation_marker = "|GENERATION|"
self.debug_on = debug
self.max_array_length = max_array_length
self.max_number_tokens = max_number_tokens
self.temperature = temperature
self.max_string_token_length = max_string_token_length
def generate_number(
self, temperature: Union[float, None] = None, iterations=0
):
"""
Generates a number based on the given prompt.
Args:
temperature (float, optional): The temperature value for number generation. Defaults to None.
iterations (int, optional): The number of iterations for generating a valid number. Defaults to 0.
Returns:
float: The generated number.
Raises:
ValueError: If a valid number cannot be generated after 3 iterations.
"""
if self.model:
prompt = self.get_prompt()
self.debug("[generate_number]", prompt, is_prompt=True)
input_tokens = self.tokenizer.encode(
prompt, return_tensors="pt"
).to(self.model.device)
response = self.model.generate(
input_tokens,
max_new_tokens=self.max_number_tokens,
num_return_sequences=1,
logits_processor=[self.number_logit_processor],
stopping_criteria=[
NumberStoppingCriteria(
self.tokenizer, len(input_tokens[0])
)
],
temperature=temperature or self.temperature,
pad_token_id=self.tokenizer.eos_token_id,
)
response = self.tokenizer.decode(
response[0], skip_special_tokens=True
)
response = response[len(prompt) :]
response = response.strip().rstrip(".")
self.debug("[generate_number]", response)
try:
return float(response)
except ValueError:
if iterations > 3:
raise ValueError(
"Failed to generate a valid number"
)
return self.generate_number(
temperature=self.temperature * 1.3,
iterations=iterations + 1,
)
elif self.llm:
prompt = self.get_prompt()
self.debug("[generate_number]", prompt, is_prompt=True)
response = self.llm(prompt)
response = response[len(prompt) :]
response = response.strip().rstrip(".")
self.debug("[generate_number]", response)
try:
return float(response)
except ValueError:
if iterations > 3:
raise ValueError(
"Failed to generate a valid number"
)
return self.generate_number(
temperature=self.temperature * 1.3,
iterations=iterations + 1,
)
elif self.llm and self.model:
raise ValueError("Both LLM and model cannot be None")
def generate_boolean(self) -> bool:
"""
Generates a boolean value based on the given prompt.
Returns:
bool: The generated boolean value.
"""
if self.model:
prompt = self.get_prompt()
self.debug("[generate_boolean]", prompt, is_prompt=True)
input_tensor = self.tokenizer.encode(
prompt, return_tensors="pt"
)
output = self.model.forward(
input_tensor.to(self.model.device)
)
logits = output.logits[0, -1]
# todo: this assumes that "true" and "false" are both tokenized to a single token
# this is probably not true for all tokenizers
# this can be fixed by looking at only the first token of both "true" and "false"
true_token_id = self.tokenizer.convert_tokens_to_ids(
"true"
)
false_token_id = self.tokenizer.convert_tokens_to_ids(
"false"
)
result = logits[true_token_id] > logits[false_token_id]
self.debug("[generate_boolean]", result)
return result.item()
elif self.llm:
prompt = self.get_prompt()
self.debug("[generate_boolean]", prompt, is_prompt=True)
output = self.llm(prompt)
return output if output == "true" or "false" else None
else:
raise ValueError("Both LLM and model cannot be None")
def generate_string(self) -> str:
if self.model:
prompt = self.get_prompt() + '"'
self.debug("[generate_string]", prompt, is_prompt=True)
input_tokens = self.tokenizer.encode(
prompt, return_tensors="pt"
).to(self.model.device)
response = self.model.generate(
input_tokens,
max_new_tokens=self.max_string_token_length,
num_return_sequences=1,
temperature=self.temperature,
stopping_criteria=[
StringStoppingCriteria(
self.tokenizer, len(input_tokens[0])
)
],
pad_token_id=self.tokenizer.eos_token_id,
)
# Some models output the prompt as part of the response
# This removes the prompt from the response if it is present
if (
len(response[0]) >= len(input_tokens[0])
and (
response[0][: len(input_tokens[0])]
== input_tokens
).all()
):
response = response[0][len(input_tokens[0]) :]
if response.shape[0] == 1:
response = response[0]
response = self.tokenizer.decode(
response, skip_special_tokens=True
)
self.debug("[generate_string]", "|" + response + "|")
if response.count('"') < 1:
return response
return response.split('"')[0].strip()
elif self.llm:
prompt = self.get_prompt() + '"'
self.debug("[generate_string]", prompt, is_prompt=True)
response = self.llm(prompt)
# Some models output the prompt as part of the response
# This removes the prompt from the response if it is present
if (
len(response[0]) >= len(input_tokens[0])
and (
response[0][: len(input_tokens[0])]
== input_tokens
).all()
):
response = response[0][len(input_tokens[0]) :]
if response.shape[0] == 1:
response = response[0]
self.debug("[generate_string]", "|" + response + "|")
if response.count('"') < 1:
return response
return response.split('"')[0].strip()
else:
raise ValueError("Both LLM and model cannot be None")
def generate_object(
self, properties: Dict[str, Any], obj: Dict[str, Any]
) -> Dict[str, Any]:
for key, schema in properties.items():
self.debug("[generate_object] generating value for", key)
obj[key] = self.generate_value(schema, obj, key)
return obj
def generate_value(
self,
schema: Dict[str, Any],
obj: Union[Dict[str, Any], List[Any]],
key: Union[str, None] = None,
) -> Any:
schema_type = schema["type"]
if schema_type == "number":
if key:
obj[key] = self.generation_marker
else:
obj.append(self.generation_marker)
return self.generate_number()
elif schema_type == "boolean":
if key:
obj[key] = self.generation_marker
else:
obj.append(self.generation_marker)
return self.generate_boolean()
elif schema_type == "string":
if key:
obj[key] = self.generation_marker
else:
obj.append(self.generation_marker)
return self.generate_string()
elif schema_type == "array":
new_array = []
obj[key] = new_array
return self.generate_array(schema["items"], new_array)
elif schema_type == "object":
new_obj = {}
if key:
obj[key] = new_obj
else:
obj.append(new_obj)
return self.generate_object(schema["properties"], new_obj)
else:
raise ValueError(
f"Unsupported schema type: {schema_type}"
)
def generate_array(
self, item_schema: Dict[str, Any], obj: Dict[str, Any]
) -> list:
if self.model:
for _ in range(self.max_array_length):
# forces array to have at least one element
element = self.generate_value(item_schema, obj)
obj[-1] = element
obj.append(self.generation_marker)
input_prompt = self.get_prompt()
obj.pop()
input_tensor = self.tokenizer.encode(
input_prompt, return_tensors="pt"
)
output = self.model.forward(
input_tensor.to(self.model.device)
)
logits = output.logits[0, -1]
top_indices = logits.topk(30).indices
sorted_token_ids = top_indices[
logits[top_indices].argsort(descending=True)
]
found_comma = False
found_close_bracket = False
for token_id in sorted_token_ids:
decoded_token = self.tokenizer.decode(token_id)
if "," in decoded_token:
found_comma = True
break
if "]" in decoded_token:
found_close_bracket = True
break
if found_close_bracket or not found_comma:
break
return obj
elif self.llm:
for _ in range(self.max_array_length):
# forces array to have at least one element
element = self.generate_value(item_schema, obj)
obj[-1] = element
obj.append(self.generation_marker)
input_prompt = self.get_prompt()
obj.pop()
output = self.llm(input_prompt)
found_comma = False
found_close_bracket = False
for token_id in output:
decoded_token = str(token_id)
if "," in decoded_token:
found_comma = True
break
if "]" in decoded_token:
found_close_bracket = True
break
if found_close_bracket or not found_comma:
break
return obj
def get_prompt(self):
template = """{prompt}\nOutput result in the following JSON schema format:\n{schema}\nResult: {progress}"""
progress = json.dumps(self.value)
gen_marker_index = progress.find(
f'"{self.generation_marker}"'
)
if gen_marker_index != -1:
progress = progress[:gen_marker_index]
else:
raise ValueError("Failed to find generation marker")
prompt = template.format(
prompt=self.prompt,
schema=json.dumps(self.json_schema),
progress=progress,
)
return prompt
def __call__(self) -> Dict[str, Any]:
self.value = {}
generated_data = self.generate_object(
self.json_schema["properties"], self.value
)
return generated_data

@ -1,109 +0,0 @@
from swarms.utils.auto_download_check_packages import (
auto_check_and_download_package,
)
from typing import Any
try:
import torch
except ImportError:
auto_check_and_download_package(
"torch", package_manager="pip", upgrade=True
)
import torch
try:
import transformers
except ImportError:
auto_check_and_download_package(
"transformers", package_manager="pip", upgrade=True
)
import transformers
class StringStoppingCriteria(transformers.StoppingCriteria):
def __init__(
self, tokenizer: Any, prompt_length: int # type: ignore
):
self.tokenizer = tokenizer
self.prompt_length = prompt_length
def __call__(
self,
input_ids: torch.LongTensor, # type: ignore
_,
) -> bool:
if len(input_ids[0]) <= self.prompt_length:
return False
last_token_id = input_ids[0][-1]
last_token = self.tokenizer.decode(
last_token_id, skip_special_tokens=True
)
result = '"' in last_token
return result
class NumberStoppingCriteria(transformers.StoppingCriteria):
def __init__(
self,
tokenizer: Any, # type: ignore
prompt_length: int,
precision: int = 3,
):
self.tokenizer = tokenizer
self.precision = precision
self.prompt_length = prompt_length
def __call__(
self,
input_ids: torch.LongTensor, # type: ignore
scores: torch.FloatTensor, # type: ignore
) -> bool:
decoded = self.tokenizer.decode(
input_ids[0][self.prompt_length :],
skip_special_tokens=True,
)
if decoded.count(".") > 1:
return True
if (
decoded.count(".") == 1
and len(decoded.strip().split(".")[1]) > self.precision
):
return True
if (
len(decoded) > 1
and any(c.isdigit() for c in decoded)
and decoded[-1] in [" ", "\n"]
):
return True
return False
class OutputNumbersTokens(transformers.LogitsWarper):
def __init__(self, tokenizer: transformers.PreTrainedTokenizer, prompt: str): # type: ignore
self.tokenizer = tokenizer
self.tokenized_prompt = tokenizer(prompt, return_tensors="pt")
vocab_size = len(tokenizer)
self.allowed_mask = torch.zeros(vocab_size, dtype=torch.bool)
for _, token_id in tokenizer.get_vocab().items():
token_str = tokenizer.decode(token_id).strip()
if token_str == "" or (
all(c.isdigit() or c == "." for c in token_str)
and token_str.count(".") <= 1
):
self.allowed_mask[token_id] = True
def __call__(self, _, scores):
mask = self.allowed_mask.expand_as(scores)
scores[~mask] = -float("inf")
return scores
Loading…
Cancel
Save