new worker == vortex with primitives

pull/45/head
Kye 1 year ago
parent 53ea599a68
commit e1ebaf84a1

@ -1,16 +1,17 @@
# workers in unison
#kye gomez jul 13 4:01pm, can scale up the number of swarms working on a probkem with `hivemind(swarms=4, or swarms=auto which will scale the agents depending on the complexity)`
#this needs to change, we need to specify exactly what needs to be imported
# add typechecking, documentation, and deeper error handling
# TODO: MANY WORKERS
import concurrent.futures
import logging
#this needs to change, we need to specify exactly what needs to be imported
from swarms.swarms.swarms import HierarchicalSwarm
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
# add typechecking, documentation, and deeper error handling
# TODO: MANY WORKERS
class HiveMind:
def __init__(self, openai_api_key="", num_swarms=1, max_workers=None):
self.openai_api_key = openai_api_key

@ -0,0 +1,127 @@
#aug 10
#Vortex is the name of my Duck friend, ILY Vortex
#Kye
from swarms.agents.base import Agent
import logging
import faiss
from typing import List, Optional, Union
from langchain.agents import Tool
from langchain.chat_models import ChatOpenAI
from langchain.docstore import InMemoryDocstore
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from swarms.agents.tools.autogpt import (
FileChatMessageHistory,
ReadFileTool,
WebpageQATool,
WriteFileTool,
load_qa_with_sources_chain,
process_csv,
web_search,
)
from swarms.agents.base import Agent
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
ROOT_DIR = "./data/"
class VortexWorkerAgent:
"""An autonomous agent instance that accomplishes various language tasks like summarization, text generation of any kind, data analysis, websearch and much more"""
def __init__(self,
openai_api_key: str,
llm: Optional[Union[InMemoryDocstore, ChatOpenAI]] = None,
tools: Optional[List[Tool]] = None,
embedding_size: Optional[int] = 8192,
worker_name: Optional[str] = "Vortex Worker Agent",
worker_role: Optional[str] = "Assistant",
human_in_the_loop: Optional[bool] = False,
search_kwargs: dict = {},
verbose: Optional[bool] = False,
chat_history_file: str = "chat_history.text"):
if not openai_api_key:
raise ValueError("openai_api_key cannot be None, try placing in ENV")
self.openai_api_key = openai_api_key
self.worker_name = worker_name
self.worker_role = worker_role
self.embedding_size = embedding_size
self.human_in_the_loop = human_in_the_loop
self.search_kwargs = search_kwargs
self.verbose = verbose
self.chat_history_file = chat_history_file
self.llm = llm or self.init_llm(ChatOpenAI)
self.tools = tools or self.init_tools()
self.vectorstore = self.init_vectorstore()
self.agent = self.create_agent()
def init_llm(self, llm_class, temperature=1.0):
try:
return llm_class(openai_api_key=self.openai_api_key, temperature=temperature)
except Exception:
logging.error("Failed to init the language model, make sure the llm function matches the llm abstract type")
raise
def init_tools(self):
try:
logging.info("Initializing tools for VortexWorkerAgent")
tools = [
web_search,
WriteFileTool,
ReadFileTool,
process_csv,
WebpageQATool(qa_chain=load_qa_with_sources_chain(self.llm))
]
return tools
except Exception as error:
logging.error(f"Failed to initialize tools: {error}")
raise
def init_vectorstore(self):
try:
embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key)
index = faiss.IndexFlatL2(embedding_size=self.embedding_size)
return FAISS(embeddings_model, index, InMemoryDocstore({}), {})
except Exception as error:
logging.error(f"Failed to initialize vector store: {error}")
raise
def create_agent(self):
logging.info("Creating agent in VortexWorkerAgent")
try:
Agent.from_llm_and_tools(
ai_name=self.worker_name,
ai_role=self.worker_role,
tools=self.tools,
llm=self.llm,
memory=self.vectorstore,
human_in_the_loop=self.human_in_the_loop,
chat_history_memory=FileChatMessageHistory(self.chat_history_file)
)
except Exception as error:
logging.error(f"Failed while creating agent {str(error)}")
raise error
def add_tool(self, tool: Tool):
if not isinstance(tool, Tool):
logging.error("Tools must be an instant of Tool")
raise TypeError("Tool must be an instance of Tool, try wrapping your tool with the Tool decorator and fill in the requirements")
self.tools.append(tool)
def run(self, prompt) -> str:
if not isinstance(prompt, str) or not prompt:
raise ValueError("Prompt must be a non empty string")
try:
self.agent.run([prompt])
return "Task completed by VortexWorkerAgent"
except Exception as error:
logging.error(f"While running the agent: {str(error)}")
raise error

@ -8,7 +8,6 @@ from langchain.docstore import InMemoryDocstore
from langchain.embeddings import OpenAIEmbeddings
from langchain_experimental.autonomous_agents import AutoGPT
from langchain.vectorstores import FAISS
from swarms.agents.tools.autogpt import (
FileChatMessageHistory,
ReadFileTool,
@ -116,7 +115,7 @@ class WorkerNode:
llm: Optional[Union[InMemoryDocstore, ChatOpenAI]] = None,
tools: Optional[List[Tool]] = None,
# vectorstore: Optional[FAISS] = None,
# embedding_size: Optional[int] = 4026,
embedding_size: Optional[int] = 4026,
worker_name: Optional[str] = "Swarm Worker AI Assistant",
worker_role: Optional[str] = "Assistant",
human_in_the_loop: Optional[bool] = False,
@ -131,7 +130,7 @@ class WorkerNode:
self.worker_node_initializer = WorkerNodeInitializer(openai_api_key)
self.name = worker_name # Added a name attribute
self.description = "A worker node that executes tasks" # Added a description attribute
self.embedding_size = embedding_size
self.embedding_size = self.embedding_size
def initialize_llm(self, llm_class, temperature):

Loading…
Cancel
Save