embed with chroma

pull/55/head
Kye 1 year ago
parent b8b0a882ab
commit e2dfdf638c

@ -45,6 +45,7 @@ tenacity = "*"
redis = "*"
Pillow = "*"
shapeless="*"
chromadb = "*"
[tool.poetry.dev-dependencies]
# Add development dependencies here

@ -1,11 +1,13 @@
import logging
import queue
import threading
from abc import ABC, abstractmethod
from concurrent.futures import ThreadPoolExecutor
from typing import Any, Dict, List
# from swarms.memory.ocean import OceanDB
import chromadb
from chromadb.utils import embedding_functions
## =========>
class Orchestrator(ABC):
@ -17,16 +19,25 @@ class Orchestrator(ABC):
collection_name: str = "swarm"
):
self.agent = agent
self.agents = [agent() for _ in range(agent_list)]
self.task_queue = task_queue
self.agents = queue.Queue()
for _ in range(agent_list):
self.agents.put(agent())
self.task_queue = queue.Queue()
self.chroma_client = chromadb.Client()
self.collection = self.chroma_client.create_collection(
name = collection_name
)
self.current_tasks = {}
self.lock = threading.Lock()
self.condition = threading.Condition(self.lock)
self.executor = ThreadPoolExecutor(max_workers=len(agent_list))
@abstractmethod
def assign_task(
@ -36,26 +47,45 @@ class Orchestrator(ABC):
) -> None:
"""Assign a task to a specific agent"""
with self.lock:
if self.task_queue:
#get and agent and a task
agent = self.agents.pop(0)
task = self.task_queue.popleft()
result, vector_representation = agent.process_task()
while True:
with self.condition:
while not self.task_queue:
self.condition.wait()
agent = self.agents.get()
task = self.task_queue.get()
#use chromas's method to add data
try:
result, vector_representation = agent.process_task(
task
)
self.collection.add(
embeddings=[vector_representation],
documents=[str(id(task))],
ids=[str(id(task))]
)
logging.info(f"Task {id(str)} has been processed by agent {id(agent)} with")
except Exception as error:
logging.error(f"Failed to process task {id(task)} by agent {id(agent)}. Error: {error}")
finally:
with self.condition:
self.agents.put(agent)
self.condition.notify()
def embed(self, input, api_key, model_name):
openai = embedding_functions.OpenAIEmbeddingFunction(
api_key=api_key,
model_name=model_name
)
embedding = openai(input)
# print(embedding)
embedding_metadata = {input: embedding}
print(embedding_metadata)
# return embedding
#put the agent back to agent slist
self.agents.append(agent)
logging.info(f"Task {id(str)} has been processed by agent {id(agent)} ")
return result
else:
logging.error("Task queue is empty")
@abstractmethod
def retrieve_results(self, agent_id: int) -> Any:
@ -115,6 +145,7 @@ class Orchestrator(ABC):
try:
self.task_queue.append(objective)
results = [
self.assign_task(
agent_id, task

Loading…
Cancel
Save