parent
c21af37f64
commit
e8681b223c
@ -0,0 +1,33 @@
|
||||
import os
|
||||
|
||||
from dotenv import load_dotenv
|
||||
|
||||
# Import the OpenAIChat model and the Agent struct
|
||||
from swarms import Agent, HuggingfaceLLM
|
||||
|
||||
# Load the environment variables
|
||||
load_dotenv()
|
||||
|
||||
# Get the API key from the environment
|
||||
api_key = os.environ.get("OPENAI_API_KEY")
|
||||
|
||||
# Initialize the language model
|
||||
llm = HuggingfaceLLM(
|
||||
model_id="codellama/CodeLlama-70b-hf",
|
||||
max_length=4000,
|
||||
quantize=True,
|
||||
temperature=0.5,
|
||||
)
|
||||
|
||||
## Initialize the workflow
|
||||
agent = Agent(
|
||||
llm=llm,
|
||||
max_loops="auto",
|
||||
system_prompt=None,
|
||||
autosave=True,
|
||||
dashboard=True,
|
||||
tools=[None],
|
||||
)
|
||||
|
||||
# Run the workflow on a task
|
||||
agent.run("Generate a 10,000 word blog on health and wellness.")
|
@ -0,0 +1,13 @@
|
||||
from swarms import RoboflowMultiModal
|
||||
|
||||
|
||||
# Initialize the model
|
||||
model = RoboflowMultiModal(
|
||||
api_key="api",
|
||||
project_id="your project id",
|
||||
hosted=False,
|
||||
)
|
||||
|
||||
|
||||
# Run the model on an img
|
||||
out = model("img.png")
|
@ -1,7 +0,0 @@
|
||||
from swarms import AutoScaler
|
||||
|
||||
auto_scaler = AutoScaler()
|
||||
auto_scaler.start()
|
||||
|
||||
for i in range(100):
|
||||
auto_scaler.add_task(f"Task {i}")
|
@ -0,0 +1,13 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Change to the root directory
|
||||
cd /
|
||||
|
||||
# Iterate over all the .py files in the directory
|
||||
for file in *.py; do
|
||||
# Get the base name of the file without the .py
|
||||
base_name=$(basename "$file" .py)
|
||||
|
||||
# Rename the file to remove .py from the end
|
||||
mv "$file" "${base_name}"
|
||||
done
|
@ -0,0 +1,81 @@
|
||||
import cv2
|
||||
|
||||
from swarms.models.base_multimodal_model import BaseMultiModalModel
|
||||
from swarms.models.sam_supervision import SegmentAnythingMarkGenerator
|
||||
from swarms.utils.supervision_masking import refine_marks
|
||||
from swarms.utils.supervision_visualizer import MarkVisualizer
|
||||
from typing import Any
|
||||
|
||||
|
||||
class GPT4VSAM(BaseMultiModalModel):
|
||||
"""
|
||||
GPT4VSAM class represents a multi-modal model that combines the capabilities of GPT-4 and SegmentAnythingMarkGenerator.
|
||||
It takes an instance of BaseMultiModalModel (vlm) and a device as input and provides methods for loading images and making predictions.
|
||||
|
||||
Args:
|
||||
vlm (BaseMultiModalModel): An instance of BaseMultiModalModel representing the visual language model.
|
||||
device (str, optional): The device to be used for computation. Defaults to "cuda".
|
||||
|
||||
Attributes:
|
||||
vlm (BaseMultiModalModel): An instance of BaseMultiModalModel representing the visual language model.
|
||||
device (str): The device to be used for computation.
|
||||
sam (SegmentAnythingMarkGenerator): An instance of SegmentAnythingMarkGenerator for generating marks.
|
||||
visualizer (MarkVisualizer): An instance of MarkVisualizer for visualizing marks.
|
||||
|
||||
Methods:
|
||||
load_img(img: str) -> Any: Loads an image from the given file path.
|
||||
__call__(task: str, img: str, *args, **kwargs) -> Any: Makes predictions using the visual language model.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vlm: BaseMultiModalModel,
|
||||
device: str = "cuda",
|
||||
return_related_marks: bool = False,
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.vlm = vlm
|
||||
self.device = device
|
||||
self.return_related_marks = return_related_marks
|
||||
|
||||
self.sam = SegmentAnythingMarkGenerator(
|
||||
device, *args, **kwargs
|
||||
)
|
||||
self.visualizer = MarkVisualizer(*args, **kwargs)
|
||||
|
||||
def load_img(self, img: str) -> Any:
|
||||
"""
|
||||
Loads an image from the given file path.
|
||||
|
||||
Args:
|
||||
img (str): The file path of the image.
|
||||
|
||||
Returns:
|
||||
Any: The loaded image.
|
||||
|
||||
"""
|
||||
return cv2.imread(img)
|
||||
|
||||
def __call__(self, task: str, img: str, *args, **kwargs) -> Any:
|
||||
"""
|
||||
Makes predictions using the visual language model.
|
||||
|
||||
Args:
|
||||
task (str): The task for which predictions are to be made.
|
||||
img (str): The file path of the image.
|
||||
*args: Additional positional arguments.
|
||||
**kwargs: Additional keyword arguments.
|
||||
|
||||
Returns:
|
||||
Any: The predictions made by the visual language model.
|
||||
|
||||
"""
|
||||
img = self.load_img(img)
|
||||
|
||||
marks = self.sam(image=img)
|
||||
marks = refine_marks(marks=marks)
|
||||
|
||||
return self.vlm(task, img, *args, **kwargs)
|
@ -0,0 +1,64 @@
|
||||
from typing import Union
|
||||
|
||||
from roboflow import Roboflow
|
||||
|
||||
from swarms.models.base_multimodal_model import BaseMultiModalModel
|
||||
|
||||
|
||||
class RoboflowMultiModal(BaseMultiModalModel):
|
||||
"""
|
||||
Initializes the RoboflowModel with the given API key, project ID, and version.
|
||||
|
||||
Args:
|
||||
api_key (str): The API key for Roboflow.
|
||||
project_id (str): The ID of the project.
|
||||
version (str): The version of the model.
|
||||
confidence (int, optional): The confidence threshold. Defaults to 50.
|
||||
overlap (int, optional): The overlap threshold. Defaults to 25.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
api_key: str,
|
||||
project_id: str,
|
||||
version: str,
|
||||
confidence: int = 50,
|
||||
overlap: int = 25,
|
||||
hosted: bool = False,
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.api_key = api_key
|
||||
self.project_id = project_id
|
||||
self.verison = version
|
||||
self.confidence = confidence
|
||||
self.overlap = overlap
|
||||
self.hosted = hosted
|
||||
|
||||
try:
|
||||
rf = Roboflow(api_key=api_key, *args, **kwargs)
|
||||
project = rf.workspace().project(project_id)
|
||||
self.model = project.version(version).model
|
||||
self.model.confidence = confidence
|
||||
self.model.overlap = overlap
|
||||
except Exception as e:
|
||||
print(f"Error initializing RoboflowModel: {str(e)}")
|
||||
|
||||
def __call__(self, img: Union[str, bytes]):
|
||||
"""
|
||||
Runs inference on an image and retrieves predictions.
|
||||
|
||||
Args:
|
||||
img (Union[str, bytes]): The path to the image or the URL of the image.
|
||||
hosted (bool, optional): Whether the image is hosted. Defaults to False.
|
||||
|
||||
Returns:
|
||||
Optional[roboflow.Prediction]: The prediction or None if an error occurs.
|
||||
"""
|
||||
try:
|
||||
prediction = self.model.predict(img, hosted=self.hosted)
|
||||
return prediction
|
||||
except Exception as e:
|
||||
print(f"Error running inference: {str(e)}")
|
||||
return None
|
@ -0,0 +1,116 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
import supervision as sv
|
||||
from PIL import Image
|
||||
from transformers import (
|
||||
pipeline,
|
||||
SamModel,
|
||||
SamProcessor,
|
||||
SamImageProcessor,
|
||||
)
|
||||
from typing import Optional
|
||||
|
||||
from swarms.utils.supervision_masking import masks_to_marks
|
||||
from swarms.models.base_multimodal_model import BaseMultiModalModel
|
||||
|
||||
|
||||
class SegmentAnythingMarkGenerator(BaseMultiModalModel):
|
||||
"""
|
||||
A class for performing image segmentation using a specified model.
|
||||
|
||||
Parameters:
|
||||
device (str): The device to run the model on (e.g., 'cpu', 'cuda').
|
||||
model_name (str): The name of the model to be loaded. Defaults to
|
||||
'facebook/sam-vit-huge'.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
device: str = "cpu",
|
||||
model_name: str = "facebook/sam-vit-huge",
|
||||
visualize_marks: bool = False,
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
super(SegmentAnythingMarkGenerator).__init__(*args, **kwargs)
|
||||
self.device = device
|
||||
self.model_name = model_name
|
||||
self.visualize_marks = visualize_marks
|
||||
|
||||
self.model = SamModel.from_pretrained(
|
||||
model_name, *args, **kwargs
|
||||
).to(device)
|
||||
self.processor = SamProcessor.from_pretrained(model_name)
|
||||
self.image_processor = SamImageProcessor.from_pretrained(
|
||||
model_name
|
||||
)
|
||||
self.device = device
|
||||
self.pipeline = pipeline(
|
||||
task="mask-generation",
|
||||
model=self.model,
|
||||
image_processor=self.image_processor,
|
||||
device=self.device,
|
||||
)
|
||||
|
||||
def __call__(
|
||||
self, image: np.ndarray, mask: Optional[np.ndarray] = None
|
||||
) -> sv.Detections:
|
||||
"""
|
||||
Generate image segmentation marks.
|
||||
|
||||
Parameters:
|
||||
image (np.ndarray): The image to be marked in BGR format.
|
||||
mask: (Optional[np.ndarray]): The mask to be used as a guide for
|
||||
segmentation.
|
||||
|
||||
Returns:
|
||||
sv.Detections: An object containing the segmentation masks and their
|
||||
corresponding bounding box coordinates.
|
||||
"""
|
||||
image = Image.fromarray(
|
||||
cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||
)
|
||||
if mask is None:
|
||||
outputs = self.pipeline(image, points_per_batch=64)
|
||||
masks = np.array(outputs["masks"])
|
||||
return masks_to_marks(masks=masks)
|
||||
else:
|
||||
inputs = self.processor(image, return_tensors="pt").to(
|
||||
self.device
|
||||
)
|
||||
image_embeddings = self.model.get_image_embeddings(
|
||||
inputs.pixel_values
|
||||
)
|
||||
masks = []
|
||||
for polygon in sv.mask_to_polygons(mask.astype(bool)):
|
||||
indexes = np.random.choice(
|
||||
a=polygon.shape[0], size=5, replace=True
|
||||
)
|
||||
input_points = polygon[indexes]
|
||||
inputs = self.processor(
|
||||
images=image,
|
||||
input_points=[[input_points]],
|
||||
return_tensors="pt",
|
||||
).to(self.device)
|
||||
del inputs["pixel_values"]
|
||||
outputs = self.model(
|
||||
image_embeddings=image_embeddings, **inputs
|
||||
)
|
||||
mask = (
|
||||
self.processor.image_processor.post_process_masks(
|
||||
masks=outputs.pred_masks.cpu().detach(),
|
||||
original_sizes=inputs["original_sizes"]
|
||||
.cpu()
|
||||
.detach(),
|
||||
reshaped_input_sizes=inputs[
|
||||
"reshaped_input_sizes"
|
||||
]
|
||||
.cpu()
|
||||
.detach(),
|
||||
)[0][0][0].numpy()
|
||||
)
|
||||
masks.append(mask)
|
||||
masks = np.array(masks)
|
||||
return masks_to_marks(masks=masks)
|
||||
|
||||
# def visualize_img(self):
|
@ -0,0 +1,31 @@
|
||||
from io import BytesIO
|
||||
import requests
|
||||
from PIL import Image
|
||||
|
||||
|
||||
def download_img_from_url(url: str):
|
||||
"""
|
||||
Downloads an image from the given URL and saves it locally.
|
||||
|
||||
Args:
|
||||
url (str): The URL of the image to download.
|
||||
|
||||
Raises:
|
||||
ValueError: If the URL is empty or invalid.
|
||||
IOError: If there is an error while downloading or saving the image.
|
||||
"""
|
||||
if not url:
|
||||
raise ValueError("URL cannot be empty.")
|
||||
|
||||
try:
|
||||
response = requests.get(url)
|
||||
response.raise_for_status()
|
||||
|
||||
image = Image.open(BytesIO(response.content))
|
||||
image.save("downloaded_image.jpg")
|
||||
|
||||
print("Image downloaded successfully.")
|
||||
except requests.exceptions.RequestException as e:
|
||||
raise IOError("Error while downloading the image.") from e
|
||||
except IOError as e:
|
||||
raise IOError("Error while saving the image.") from e
|
@ -0,0 +1,259 @@
|
||||
from enum import Enum
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import supervision as sv
|
||||
|
||||
|
||||
class FeatureType(Enum):
|
||||
"""
|
||||
An enumeration to represent the types of features for mask adjustment in image
|
||||
segmentation.
|
||||
"""
|
||||
|
||||
ISLAND = "ISLAND"
|
||||
HOLE = "HOLE"
|
||||
|
||||
@classmethod
|
||||
def list(cls):
|
||||
return list(map(lambda c: c.value, cls))
|
||||
|
||||
|
||||
def compute_mask_iou_vectorized(masks: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Vectorized computation of the Intersection over Union (IoU) for all pairs of masks.
|
||||
|
||||
Parameters:
|
||||
masks (np.ndarray): A 3D numpy array with shape `(N, H, W)`, where `N` is the
|
||||
number of masks, `H` is the height, and `W` is the width.
|
||||
|
||||
Returns:
|
||||
np.ndarray: A 2D numpy array of shape `(N, N)` where each element `[i, j]` is
|
||||
the IoU between masks `i` and `j`.
|
||||
|
||||
Raises:
|
||||
ValueError: If any of the masks is found to be empty.
|
||||
"""
|
||||
if np.any(masks.sum(axis=(1, 2)) == 0):
|
||||
raise ValueError(
|
||||
"One or more masks are empty. Please filter out empty"
|
||||
" masks before using `compute_iou_vectorized` function."
|
||||
)
|
||||
|
||||
masks_bool = masks.astype(bool)
|
||||
masks_flat = masks_bool.reshape(masks.shape[0], -1)
|
||||
intersection = np.logical_and(
|
||||
masks_flat[:, None], masks_flat[None, :]
|
||||
).sum(axis=2)
|
||||
union = np.logical_or(
|
||||
masks_flat[:, None], masks_flat[None, :]
|
||||
).sum(axis=2)
|
||||
iou_matrix = intersection / union
|
||||
return iou_matrix
|
||||
|
||||
|
||||
def mask_non_max_suppression(
|
||||
masks: np.ndarray, iou_threshold: float = 0.6
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Performs Non-Max Suppression on a set of masks by prioritizing larger masks and
|
||||
removing smaller masks that overlap significantly.
|
||||
|
||||
When the IoU between two masks exceeds the specified threshold, the smaller mask
|
||||
(in terms of area) is discarded. This process is repeated for each pair of masks,
|
||||
effectively filtering out masks that are significantly overlapped by larger ones.
|
||||
|
||||
Parameters:
|
||||
masks (np.ndarray): A 3D numpy array with shape `(N, H, W)`, where `N` is the
|
||||
number of masks, `H` is the height, and `W` is the width.
|
||||
iou_threshold (float): The IoU threshold for determining significant overlap.
|
||||
|
||||
Returns:
|
||||
np.ndarray: A 3D numpy array of filtered masks.
|
||||
"""
|
||||
num_masks = masks.shape[0]
|
||||
areas = masks.sum(axis=(1, 2))
|
||||
sorted_idx = np.argsort(-areas)
|
||||
keep_mask = np.ones(num_masks, dtype=bool)
|
||||
iou_matrix = compute_mask_iou_vectorized(masks)
|
||||
for i in range(num_masks):
|
||||
if not keep_mask[sorted_idx[i]]:
|
||||
continue
|
||||
|
||||
overlapping_masks = iou_matrix[sorted_idx[i]] > iou_threshold
|
||||
overlapping_masks[sorted_idx[i]] = False
|
||||
overlapping_indices = np.where(overlapping_masks)[0]
|
||||
keep_mask[sorted_idx[overlapping_indices]] = False
|
||||
|
||||
return masks[keep_mask]
|
||||
|
||||
|
||||
def filter_masks_by_relative_area(
|
||||
masks: np.ndarray,
|
||||
minimum_area: float = 0.01,
|
||||
maximum_area: float = 1.0,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Filters masks based on their relative area within the total area of each mask.
|
||||
|
||||
Parameters:
|
||||
masks (np.ndarray): A 3D numpy array with shape `(N, H, W)`, where `N` is the
|
||||
number of masks, `H` is the height, and `W` is the width.
|
||||
minimum_area (float): The minimum relative area threshold. Must be between `0`
|
||||
and `1`.
|
||||
maximum_area (float): The maximum relative area threshold. Must be between `0`
|
||||
and `1`.
|
||||
|
||||
Returns:
|
||||
np.ndarray: A 3D numpy array containing masks that fall within the specified
|
||||
relative area range.
|
||||
|
||||
Raises:
|
||||
ValueError: If `minimum_area` or `maximum_area` are outside the `0` to `1`
|
||||
range, or if `minimum_area` is greater than `maximum_area`.
|
||||
"""
|
||||
|
||||
if not (isinstance(masks, np.ndarray) and masks.ndim == 3):
|
||||
raise ValueError("Input must be a 3D numpy array.")
|
||||
|
||||
if not (0 <= minimum_area <= 1) or not (0 <= maximum_area <= 1):
|
||||
raise ValueError(
|
||||
"`minimum_area` and `maximum_area` must be between 0"
|
||||
" and 1."
|
||||
)
|
||||
|
||||
if minimum_area > maximum_area:
|
||||
raise ValueError(
|
||||
"`minimum_area` must be less than or equal to"
|
||||
" `maximum_area`."
|
||||
)
|
||||
|
||||
total_area = masks.shape[1] * masks.shape[2]
|
||||
relative_areas = masks.sum(axis=(1, 2)) / total_area
|
||||
return masks[
|
||||
(relative_areas >= minimum_area)
|
||||
& (relative_areas <= maximum_area)
|
||||
]
|
||||
|
||||
|
||||
def adjust_mask_features_by_relative_area(
|
||||
mask: np.ndarray,
|
||||
area_threshold: float,
|
||||
feature_type: FeatureType = FeatureType.ISLAND,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Adjusts a mask by removing small islands or filling small holes based on a relative
|
||||
area threshold.
|
||||
|
||||
!!! warning
|
||||
|
||||
Running this function on a mask with small islands may result in empty masks.
|
||||
|
||||
Parameters:
|
||||
mask (np.ndarray): A 2D numpy array with shape `(H, W)`, where `H` is the
|
||||
height, and `W` is the width.
|
||||
area_threshold (float): Threshold for relative area to remove or fill features.
|
||||
feature_type (FeatureType): Type of feature to adjust (`ISLAND` for removing
|
||||
islands, `HOLE` for filling holes).
|
||||
|
||||
Returns:
|
||||
np.ndarray: A 2D numpy array containing mask.
|
||||
"""
|
||||
height, width = mask.shape
|
||||
total_area = width * height
|
||||
|
||||
mask = np.uint8(mask * 255)
|
||||
operation = (
|
||||
cv2.RETR_EXTERNAL
|
||||
if feature_type == FeatureType.ISLAND
|
||||
else cv2.RETR_CCOMP
|
||||
)
|
||||
contours, _ = cv2.findContours(
|
||||
mask, operation, cv2.CHAIN_APPROX_SIMPLE
|
||||
)
|
||||
|
||||
for contour in contours:
|
||||
area = cv2.contourArea(contour)
|
||||
relative_area = area / total_area
|
||||
if relative_area < area_threshold:
|
||||
cv2.drawContours(
|
||||
image=mask,
|
||||
contours=[contour],
|
||||
contourIdx=-1,
|
||||
color=(
|
||||
0 if feature_type == FeatureType.ISLAND else 255
|
||||
),
|
||||
thickness=-1,
|
||||
)
|
||||
return np.where(mask > 0, 1, 0).astype(bool)
|
||||
|
||||
|
||||
def masks_to_marks(masks: np.ndarray) -> sv.Detections:
|
||||
"""
|
||||
Converts a set of masks to a marks (sv.Detections) object.
|
||||
|
||||
Parameters:
|
||||
masks (np.ndarray): A 3D numpy array with shape `(N, H, W)`, where `N` is the
|
||||
number of masks, `H` is the height, and `W` is the width.
|
||||
|
||||
Returns:
|
||||
sv.Detections: An object containing the masks and their bounding box
|
||||
coordinates.
|
||||
"""
|
||||
if len(masks) == 0:
|
||||
marks = sv.Detections.empty()
|
||||
marks.mask = np.empty((0, 0, 0), dtype=bool)
|
||||
return marks
|
||||
return sv.Detections(
|
||||
mask=masks, xyxy=sv.mask_to_xyxy(masks=masks)
|
||||
)
|
||||
|
||||
|
||||
def refine_marks(
|
||||
marks: sv.Detections,
|
||||
maximum_hole_area: float = 0.01,
|
||||
maximum_island_area: float = 0.01,
|
||||
minimum_mask_area: float = 0.02,
|
||||
maximum_mask_area: float = 1.0,
|
||||
) -> sv.Detections:
|
||||
"""
|
||||
Refines a set of masks by removing small islands and holes, and filtering by mask
|
||||
area.
|
||||
|
||||
Parameters:
|
||||
marks (sv.Detections): An object containing the masks and their bounding box
|
||||
coordinates.
|
||||
maximum_hole_area (float): The maximum relative area of holes to be filled in
|
||||
each mask.
|
||||
maximum_island_area (float): The maximum relative area of islands to be removed
|
||||
from each mask.
|
||||
minimum_mask_area (float): The minimum relative area for a mask to be retained.
|
||||
maximum_mask_area (float): The maximum relative area for a mask to be retained.
|
||||
|
||||
Returns:
|
||||
sv.Detections: An object containing the masks and their bounding box
|
||||
coordinates.
|
||||
"""
|
||||
result_masks = []
|
||||
for mask in marks.mask:
|
||||
mask = adjust_mask_features_by_relative_area(
|
||||
mask=mask,
|
||||
area_threshold=maximum_island_area,
|
||||
feature_type=FeatureType.ISLAND,
|
||||
)
|
||||
mask = adjust_mask_features_by_relative_area(
|
||||
mask=mask,
|
||||
area_threshold=maximum_hole_area,
|
||||
feature_type=FeatureType.HOLE,
|
||||
)
|
||||
if np.any(mask):
|
||||
result_masks.append(mask)
|
||||
result_masks = np.array(result_masks)
|
||||
result_masks = filter_masks_by_relative_area(
|
||||
masks=result_masks,
|
||||
minimum_area=minimum_mask_area,
|
||||
maximum_area=maximum_mask_area,
|
||||
)
|
||||
return sv.Detections(
|
||||
mask=result_masks, xyxy=sv.mask_to_xyxy(masks=result_masks)
|
||||
)
|
@ -0,0 +1,85 @@
|
||||
import numpy as np
|
||||
import supervision as sv
|
||||
|
||||
|
||||
class MarkVisualizer:
|
||||
"""
|
||||
A class for visualizing different marks including bounding boxes, masks, polygons,
|
||||
and labels.
|
||||
|
||||
Parameters:
|
||||
line_thickness (int): The thickness of the lines for boxes and polygons.
|
||||
mask_opacity (float): The opacity level for masks.
|
||||
text_scale (float): The scale of the text for labels.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
line_thickness: int = 2,
|
||||
mask_opacity: float = 0.1,
|
||||
text_scale: float = 0.6,
|
||||
) -> None:
|
||||
self.box_annotator = sv.BoundingBoxAnnotator(
|
||||
color_lookup=sv.ColorLookup.INDEX,
|
||||
thickness=line_thickness,
|
||||
)
|
||||
self.mask_annotator = sv.MaskAnnotator(
|
||||
color_lookup=sv.ColorLookup.INDEX, opacity=mask_opacity
|
||||
)
|
||||
self.polygon_annotator = sv.PolygonAnnotator(
|
||||
color_lookup=sv.ColorLookup.INDEX,
|
||||
thickness=line_thickness,
|
||||
)
|
||||
self.label_annotator = sv.LabelAnnotator(
|
||||
color=sv.Color.black(),
|
||||
text_color=sv.Color.white(),
|
||||
color_lookup=sv.ColorLookup.INDEX,
|
||||
text_position=sv.Position.CENTER_OF_MASS,
|
||||
text_scale=text_scale,
|
||||
)
|
||||
|
||||
def visualize(
|
||||
self,
|
||||
image: np.ndarray,
|
||||
marks: sv.Detections,
|
||||
with_box: bool = False,
|
||||
with_mask: bool = False,
|
||||
with_polygon: bool = True,
|
||||
with_label: bool = True,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Visualizes annotations on an image.
|
||||
|
||||
This method takes an image and an instance of sv.Detections, and overlays
|
||||
the specified types of marks (boxes, masks, polygons, labels) on the image.
|
||||
|
||||
Parameters:
|
||||
image (np.ndarray): The image on which to overlay annotations.
|
||||
marks (sv.Detections): The detection results containing the annotations.
|
||||
with_box (bool): Whether to draw bounding boxes. Defaults to False.
|
||||
with_mask (bool): Whether to overlay masks. Defaults to False.
|
||||
with_polygon (bool): Whether to draw polygons. Defaults to True.
|
||||
with_label (bool): Whether to add labels. Defaults to True.
|
||||
|
||||
Returns:
|
||||
np.ndarray: The annotated image.
|
||||
"""
|
||||
annotated_image = image.copy()
|
||||
if with_box:
|
||||
annotated_image = self.box_annotator.annotate(
|
||||
scene=annotated_image, detections=marks
|
||||
)
|
||||
if with_mask:
|
||||
annotated_image = self.mask_annotator.annotate(
|
||||
scene=annotated_image, detections=marks
|
||||
)
|
||||
if with_polygon:
|
||||
annotated_image = self.polygon_annotator.annotate(
|
||||
scene=annotated_image, detections=marks
|
||||
)
|
||||
if with_label:
|
||||
labels = list(map(str, range(len(marks))))
|
||||
annotated_image = self.label_annotator.annotate(
|
||||
scene=annotated_image, detections=marks, labels=labels
|
||||
)
|
||||
return annotated_image
|
Loading…
Reference in new issue