|
|
|
@ -3,18 +3,18 @@ import concurrent.futures
|
|
|
|
|
import logging
|
|
|
|
|
from typing import List, Tuple
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
from termcolor import colored
|
|
|
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
|
|
|
from transformers import (
|
|
|
|
|
AutoModelForCausalLM,
|
|
|
|
|
AutoTokenizer,
|
|
|
|
|
BitsAndBytesConfig,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
from swarms.models.base_llm import AbstractLLM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class HuggingfaceLLM:
|
|
|
|
|
class HuggingfaceLLM(AbstractLLM):
|
|
|
|
|
"""
|
|
|
|
|
A class for running inference on a given model.
|
|
|
|
|
|
|
|
|
@ -123,7 +123,6 @@ class HuggingfaceLLM:
|
|
|
|
|
quantize: bool = False,
|
|
|
|
|
quantization_config: dict = None,
|
|
|
|
|
verbose=False,
|
|
|
|
|
# logger=None,
|
|
|
|
|
distributed=False,
|
|
|
|
|
decoding=False,
|
|
|
|
|
max_workers: int = 5,
|
|
|
|
@ -135,6 +134,7 @@ class HuggingfaceLLM:
|
|
|
|
|
*args,
|
|
|
|
|
**kwargs,
|
|
|
|
|
):
|
|
|
|
|
super().__init__(*args, **kwargs)
|
|
|
|
|
self.logger = logging.getLogger(__name__)
|
|
|
|
|
self.device = (
|
|
|
|
|
device
|
|
|
|
@ -174,16 +174,21 @@ class HuggingfaceLLM:
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
self.model_id, *args, **kwargs
|
|
|
|
|
self.model_id
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if quantize:
|
|
|
|
|
self.model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
self.model_id,
|
|
|
|
|
quantization_config=bnb_config,
|
|
|
|
|
*args,
|
|
|
|
|
**kwargs,
|
|
|
|
|
)
|
|
|
|
|
).to(self.device)
|
|
|
|
|
else:
|
|
|
|
|
self.model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
self.model_id, *args, **kwargs
|
|
|
|
|
).to(self.device)
|
|
|
|
|
|
|
|
|
|
self.model # .to(self.device)
|
|
|
|
|
except Exception as e:
|
|
|
|
|
# self.logger.error(f"Failed to load the model or the tokenizer: {e}")
|
|
|
|
|
# raise
|
|
|
|
@ -205,33 +210,6 @@ class HuggingfaceLLM:
|
|
|
|
|
"""Ashcnronous generate text for a given prompt"""
|
|
|
|
|
return await asyncio.to_thread(self.run, task)
|
|
|
|
|
|
|
|
|
|
def load_model(self):
|
|
|
|
|
"""Load the model"""
|
|
|
|
|
if not self.model or not self.tokenizer:
|
|
|
|
|
try:
|
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
self.model_id
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
bnb_config = (
|
|
|
|
|
BitsAndBytesConfig(**self.quantization_config)
|
|
|
|
|
if self.quantization_config
|
|
|
|
|
else None
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
self.model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
self.model_id, quantization_config=bnb_config
|
|
|
|
|
).to(self.device)
|
|
|
|
|
|
|
|
|
|
if self.distributed:
|
|
|
|
|
self.model = DDP(self.model)
|
|
|
|
|
except Exception as error:
|
|
|
|
|
self.logger.error(
|
|
|
|
|
"Failed to load the model or the tokenizer:"
|
|
|
|
|
f" {error}"
|
|
|
|
|
)
|
|
|
|
|
raise
|
|
|
|
|
|
|
|
|
|
def concurrent_run(self, tasks: List[str], max_workers: int = 5):
|
|
|
|
|
"""Concurrently generate text for a list of prompts."""
|
|
|
|
|
with concurrent.futures.ThreadPoolExecutor(
|
|
|
|
@ -252,7 +230,7 @@ class HuggingfaceLLM:
|
|
|
|
|
results = [future.result() for future in futures]
|
|
|
|
|
return results
|
|
|
|
|
|
|
|
|
|
def run(self, task: str):
|
|
|
|
|
def run(self, task: str, *args, **kwargs):
|
|
|
|
|
"""
|
|
|
|
|
Generate a response based on the prompt text.
|
|
|
|
|
|
|
|
|
@ -263,20 +241,12 @@ class HuggingfaceLLM:
|
|
|
|
|
Returns:
|
|
|
|
|
- Generated text (str).
|
|
|
|
|
"""
|
|
|
|
|
self.load_model()
|
|
|
|
|
|
|
|
|
|
max_length = self.max_length
|
|
|
|
|
|
|
|
|
|
self.print_dashboard(task)
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
inputs = self.tokenizer.encode(task, return_tensors="pt")
|
|
|
|
|
|
|
|
|
|
# self.log.start()
|
|
|
|
|
|
|
|
|
|
if self.decoding:
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
for _ in range(max_length):
|
|
|
|
|
for _ in range(self.max_length):
|
|
|
|
|
output_sequence = []
|
|
|
|
|
|
|
|
|
|
outputs = self.model.generate(
|
|
|
|
@ -300,7 +270,11 @@ class HuggingfaceLLM:
|
|
|
|
|
else:
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
outputs = self.model.generate(
|
|
|
|
|
inputs, max_length=max_length, do_sample=True
|
|
|
|
|
inputs,
|
|
|
|
|
max_length=self.max_length,
|
|
|
|
|
do_sample=True,
|
|
|
|
|
*args,
|
|
|
|
|
**kwargs,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
del inputs
|
|
|
|
@ -320,67 +294,8 @@ class HuggingfaceLLM:
|
|
|
|
|
)
|
|
|
|
|
raise
|
|
|
|
|
|
|
|
|
|
def __call__(self, task: str):
|
|
|
|
|
"""
|
|
|
|
|
Generate a response based on the prompt text.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
- task (str): Text to prompt the model.
|
|
|
|
|
- max_length (int): Maximum length of the response.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
- Generated text (str).
|
|
|
|
|
"""
|
|
|
|
|
self.load_model()
|
|
|
|
|
|
|
|
|
|
max_length = self.max_length
|
|
|
|
|
|
|
|
|
|
self.print_dashboard(task)
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
inputs = self.tokenizer.encode(
|
|
|
|
|
task, return_tensors="pt"
|
|
|
|
|
).to(self.device)
|
|
|
|
|
|
|
|
|
|
# self.log.start()
|
|
|
|
|
|
|
|
|
|
if self.decoding:
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
for _ in range(max_length):
|
|
|
|
|
output_sequence = []
|
|
|
|
|
|
|
|
|
|
outputs = self.model.generate(
|
|
|
|
|
inputs,
|
|
|
|
|
max_length=len(inputs) + 1,
|
|
|
|
|
do_sample=True,
|
|
|
|
|
)
|
|
|
|
|
output_tokens = outputs[0][-1]
|
|
|
|
|
output_sequence.append(output_tokens.item())
|
|
|
|
|
|
|
|
|
|
# print token in real-time
|
|
|
|
|
print(
|
|
|
|
|
self.tokenizer.decode(
|
|
|
|
|
[output_tokens],
|
|
|
|
|
skip_special_tokens=True,
|
|
|
|
|
),
|
|
|
|
|
end="",
|
|
|
|
|
flush=True,
|
|
|
|
|
)
|
|
|
|
|
inputs = outputs
|
|
|
|
|
else:
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
outputs = self.model.generate(
|
|
|
|
|
inputs, max_length=max_length, do_sample=True
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
del inputs
|
|
|
|
|
|
|
|
|
|
return self.tokenizer.decode(
|
|
|
|
|
outputs[0], skip_special_tokens=True
|
|
|
|
|
)
|
|
|
|
|
except Exception as e:
|
|
|
|
|
self.logger.error(f"Failed to generate the text: {e}")
|
|
|
|
|
raise
|
|
|
|
|
def __call__(self, task: str, *args, **kwargs):
|
|
|
|
|
return self.run(task, *args, **kwargs)
|
|
|
|
|
|
|
|
|
|
async def __call_async__(self, task: str, *args, **kwargs) -> str:
|
|
|
|
|
"""Call the model asynchronously""" ""
|
|
|
|
|