Merge branch 'kyegomez:master' into master

pull/187/head
evelynmitchell 1 year ago committed by GitHub
commit e922045cf0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -117,6 +117,32 @@ workflow.run()
for task in workflow.tasks:
print(f"Task: {task.description}, Result: {task.result}")
```
## `Multi Modal Autonomous Agents`
- Run the flow with multiple modalities useful for various real-world tasks in manufacturing, logistics, and health.
```python
from swarms.structs import Flow
from swarms.models.gpt4_vision_api import GPT4VisionAPI
# Initialize the llm
llm = GPT4VisionAPI()
task = "Analyze this image of an assembly line and identify any issues such as misaligned parts, defects, or deviations from the standard assembly process. IF there is anything unsafe in the image, explain why it is unsafe and how it could be improved."
img = "assembly_line.jpg"
## Initialize the workflow
flow = Flow(
llm=llm,
max_loops=1,
dashboard=True,
)
# Run the flow
flow.run(task=task, img=img)
```
---

@ -1,251 +1,201 @@
# `GPT4Vision` Documentation
# `GPT4VisionAPI` Documentation
## Table of Contents
- [Overview](#overview)
**Table of Contents**
- [Introduction](#introduction)
- [Installation](#installation)
- [Module Overview](#module-overview)
- [Class: GPT4VisionAPI](#class-gpt4visionapi)
- [Initialization](#initialization)
- [Methods](#methods)
- [process_img](#process_img)
- [__call__](#__call__)
- [encode_image](#encode_image)
- [run](#run)
- [arun](#arun)
- [Configuration Options](#configuration-options)
- [Usage Examples](#usage-examples)
- [Additional Tips](#additional-tips)
- [References and Resources](#references-and-resources)
---
## Overview
The GPT4Vision Model API is designed to provide an easy-to-use interface for interacting with the OpenAI GPT-4 Vision model. This model can generate textual descriptions for images and answer questions related to visual content. Whether you want to describe images or perform other vision-related tasks, GPT4Vision makes it simple and efficient.
- [__call__](#__call__)
- [Examples](#examples)
- [Example 1: Basic Usage](#example-1-basic-usage)
- [Example 2: Custom API Key](#example-2-custom-api-key)
- [Example 3: Adjusting Maximum Tokens](#example-3-adjusting-maximum-tokens)
- [Additional Information](#additional-information)
- [References](#references)
The library offers a straightforward way to send images and tasks to the GPT-4 Vision model and retrieve the generated responses. It handles API communication, authentication, and retries, making it a powerful tool for developers working with computer vision and natural language processing tasks.
## Introduction<a name="introduction"></a>
## Installation
Welcome to the documentation for the `GPT4VisionAPI` module! This module is a powerful wrapper for the OpenAI GPT-4 Vision model. It allows you to interact with the model to generate descriptions or answers related to images. This documentation will provide you with comprehensive information on how to use this module effectively.
To use the GPT4Vision Model API, you need to install the required dependencies and configure your environment. Follow these steps to get started:
## Installation<a name="installation"></a>
1. Install the required Python package:
Before you start using the `GPT4VisionAPI` module, make sure you have the required dependencies installed. You can install them using the following commands:
```bash
pip3 install --upgrade swarms
```
2. Make sure you have an OpenAI API key. You can obtain one by signing up on the [OpenAI platform](https://beta.openai.com/signup/).
## Module Overview<a name="module-overview"></a>
3. Set your OpenAI API key as an environment variable. You can do this in your code or your environment configuration. Alternatively, you can provide the API key directly when initializing the `GPT4Vision` class.
The `GPT4VisionAPI` module serves as a bridge between your application and the OpenAI GPT-4 Vision model. It allows you to send requests to the model and retrieve responses related to images. Here are some key features and functionality provided by this module:
## Initialization
- Encoding images to base64 format.
- Running the GPT-4 Vision model with specified tasks and images.
- Customization options such as setting the OpenAI API key and maximum token limit.
To start using the GPT4Vision Model API, you need to create an instance of the `GPT4Vision` class. You can customize its behavior by providing various configuration options, but it also comes with sensible defaults.
## Class: GPT4VisionAPI<a name="class-gpt4visionapi"></a>
Here's how you can initialize the `GPT4Vision` class:
The `GPT4VisionAPI` class is the core component of this module. It encapsulates the functionality required to interact with the GPT-4 Vision model. Below, we'll dive into the class in detail.
```python
from swarms.models.gpt4v import GPT4Vision
gpt4vision = GPT4Vision(
api_key="Your Key"
)
```
### Initialization<a name="initialization"></a>
The above code initializes the `GPT4Vision` class with default settings. You can adjust these settings as needed.
When initializing the `GPT4VisionAPI` class, you have the option to provide the OpenAI API key and set the maximum token limit. Here are the parameters and their descriptions:
## Methods
| Parameter | Type | Default Value | Description |
|---------------------|----------|-------------------------------|----------------------------------------------------------------------------------------------------------|
| openai_api_key | str | `OPENAI_API_KEY` environment variable (if available) | The OpenAI API key. If not provided, it defaults to the `OPENAI_API_KEY` environment variable. |
| max_tokens | int | 300 | The maximum number of tokens to generate in the model's response. |
### `process_img`
The `process_img` method is used to preprocess an image before sending it to the GPT-4 Vision model. It takes the image path as input and returns the processed image in a format suitable for API requests.
Here's how you can initialize the `GPT4VisionAPI` class:
```python
processed_img = gpt4vision.process_img(img_path)
```
- `img_path` (str): The file path or URL of the image to be processed.
### `__call__`
The `__call__` method is the main method for interacting with the GPT-4 Vision model. It sends the image and tasks to the model and returns the generated response.
```python
response = gpt4vision(img, tasks)
```
- `img` (Union[str, List[str]]): Either a single image URL or a list of image URLs to be used for the API request.
- `tasks` (List[str]): A list of tasks or questions related to the image(s).
This method returns a `GPT4VisionResponse` object, which contains the generated answer.
### `run`
from swarms.models import GPT4VisionAPI
The `run` method is an alternative way to interact with the GPT-4 Vision model. It takes a single task and image URL as input and returns the generated response.
# Initialize with default API key and max_tokens
api = GPT4VisionAPI()
```python
response = gpt4vision.run(task, img)
# Initialize with custom API key and max_tokens
custom_api_key = "your_custom_api_key"
api = GPT4VisionAPI(openai_api_key=custom_api_key, max_tokens=500)
```
- `task` (str): The task or question related to the image.
- `img` (str): The image URL to be used for the API request.
This method simplifies interactions when dealing with a single task and image.
### Methods<a name="methods"></a>
### `arun`
#### encode_image<a name="encode_image"></a>
The `arun` method is an asynchronous version of the `run` method. It allows for asynchronous processing of API requests, which can be useful in certain scenarios.
This method allows you to encode an image from a URL to base64 format. It's a utility function used internally by the module.
```python
import asyncio
def encode_image(img: str) -> str:
"""
Encode image to base64.
async def main():
response = await gpt4vision.arun(task, img)
print(response)
Parameters:
- img (str): URL of the image to encode.
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
Returns:
str: Base64 encoded image.
"""
```
- `task` (str): The task or question related to the image.
- `img` (str): The image URL to be used for the API request.
## Configuration Options
The `GPT4Vision` class provides several configuration options that allow you to customize its behavior:
#### run<a name="run"></a>
- `max_retries` (int): The maximum number of retries to make to the API. Default: 3
- `backoff_factor` (float): The backoff factor to use for exponential backoff. Default: 2.0
- `timeout_seconds` (int): The timeout in seconds for the API request. Default: 10
- `api_key` (str): The API key to use for the API request. Default: None (set via environment variable)
- `quality` (str): The quality of the image to generate. Options: 'low' or 'high'. Default: 'low'
- `max_tokens` (int): The maximum number of tokens to use for the API request. Default: 200
The `run` method is the primary way to interact with the GPT-4 Vision model. It sends a request to the model with a task and an image URL, and it returns the model's response.
## Usage Examples
```python
def run(task: str, img: str) -> str:
"""
Run the GPT-4 Vision model.
### Example 1: Generating Image Descriptions
Parameters:
- task (str): The task or question related to the image.
- img (str): URL of the image to analyze.
```python
gpt4vision = GPT4Vision()
img = "https://example.com/image.jpg"
tasks = ["Describe this image."]
response = gpt4vision(img, tasks)
print(response.answer)
Returns:
str: The model's response.
"""
```
In this example, we create an instance of `GPT4Vision`, provide an image URL, and ask the model to describe the image. The response contains the generated description.
#### __call__<a name="__call__"></a>
### Example 2: Custom Configuration
The `__call__` method is a convenient way to run the GPT-4 Vision model. It has the same functionality as the `run` method.
```python
custom_config = {
"max_retries": 5,
"timeout_seconds": 20,
"quality": "high",
"max_tokens": 300,
}
gpt4vision = GPT4Vision(**custom_config)
img = "https://example.com/another_image.jpg"
tasks = ["What objects can you identify in this image?"]
response = gpt4vision(img, tasks)
print(response.answer)
```
def __call__(task: str, img: str) -> str:
"""
Run the GPT-4 Vision model (callable).
In this example, we create an instance of `GPT4Vision` with custom configuration options. We set a higher timeout, request high-quality images, and allow more tokens in the response.
Parameters:
- task (str): The task or question related to the image.
- img
### Example 3: Using the `run` Method
(str): URL of the image to analyze.
```python
gpt4vision = GPT4Vision()
img = "https://example.com/image.jpg"
task = "Describe this image in detail."
response = gpt4vision.run(task, img)
print(response)
Returns:
str: The model's response.
"""
```
In this example, we use the `run` method to simplify the interaction by providing a single task and image URL.
## Examples<a name="examples"></a>
# Model Usage and Image Understanding
Let's explore some usage examples of the `GPT4VisionAPI` module to better understand how to use it effectively.
The GPT-4 Vision model processes images in a unique way, allowing it to answer questions about both or each of the images independently. Here's an overview:
### Example 1: Basic Usage<a name="example-1-basic-usage"></a>
| Purpose | Description |
| --------------------------------------- | ---------------------------------------------------------------------------------------------------------------- |
| Image Understanding | The model is shown two copies of the same image and can answer questions about both or each of the images independently. |
In this example, we'll use the module with the default API key and maximum tokens to analyze an image.
# Image Detail Control
```python
from swarms.models import GPT4VisionAPI
You have control over how the model processes the image and generates textual understanding by using the `detail` parameter, which has two options: `low` and `high`.
# Initialize with default API key and max_tokens
api = GPT4VisionAPI()
| Detail | Description |
| -------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| low | Disables the "high-res" model. The model receives a low-res 512 x 512 version of the image and represents the image with a budget of 65 tokens. Ideal for use cases not requiring high detail. |
| high | Enables "high-res" mode. The model first sees the low-res image and then creates detailed crops of input images as 512px squares based on the input image size. Uses a total of 129 tokens. |
# Define the task and image URL
task = "What is the color of the object?"
img = "https://i.imgur.com/2M2ZGwC.jpeg"
# Managing Images
# Run the GPT-4 Vision model
response = api.run(task, img)
To use the Chat Completions API effectively, you must manage the images you pass to the model. Here are some key considerations:
# Print the model's response
print(response)
```
| Management Aspect | Description |
| ------------------------- | ------------------------------------------------------------------------------------------------- |
| Image Reuse | To pass the same image multiple times, include the image with each API request. |
| Image Size Optimization | Improve latency by downsizing images to meet the expected size requirements. |
| Image Deletion | After processing, images are deleted from OpenAI servers and not retained. No data is used for training. |
### Example 2: Custom API Key<a name="example-2-custom-api-key"></a>
# Limitations
If you have a custom API key, you can initialize the module with it as shown in this example.
While GPT-4 with Vision is powerful, it has some limitations:
```python
from swarms.models import GPT4VisionAPI
| Limitation | Description |
| -------------------------------------------- | --------------------------------------------------------------------------------------------------- |
| Medical Images | Not suitable for interpreting specialized medical images like CT scans. |
| Non-English Text | May not perform optimally when handling non-Latin alphabets, such as Japanese or Korean. |
| Large Text in Images | Enlarge text within images for readability, but avoid cropping important details. |
| Rotated or Upside-Down Text/Images | May misinterpret rotated or upside-down text or images. |
| Complex Visual Elements | May struggle to understand complex graphs or text with varying colors or styles. |
| Spatial Reasoning | Struggles with tasks requiring precise spatial localization, such as identifying chess positions. |
| Accuracy | May generate incorrect descriptions or captions in certain scenarios. |
| Panoramic and Fisheye Images | Struggles with panoramic and fisheye images. |
# Initialize with custom API key and max_tokens
custom_api_key = "your_custom_api_key"
api = GPT4VisionAPI(openai_api_key=custom_api_key, max_tokens=500)
# Calculating Costs
# Define the task and image URL
task = "What is the object in the image?"
img = "https://i.imgur.com/3T3ZHwD.jpeg"
Image inputs are metered and charged in tokens. The token cost depends on the image size and detail option.
# Run the GPT-4 Vision model
response = api.run(task, img)
| Example | Token Cost |
| --------------------------------------------- | ----------- |
| 1024 x 1024 square image in detail: high mode | 765 tokens |
| 2048 x 4096 image in detail: high mode | 1105 tokens |
| 4096 x 8192 image in detail: low mode | 85 tokens |
# Print the model's response
print(response)
```
# FAQ
### Example 3: Adjusting Maximum Tokens<a name="example-3-adjusting-maximum-tokens"></a>
Here are some frequently asked questions about GPT-4 with Vision:
You can also customize the maximum token limit when initializing the module. In this example, we set it to 1000 tokens.
| Question | Answer |
| -------------------------------------------- | -------------------------------------------------------------------------------------------------- |
| Fine-Tuning Image Capabilities | No, fine-tuning the image capabilities of GPT-4 is not supported at this time. |
| Generating Images | GPT-4 is used for understanding images, not generating them. |
| Supported Image File Types | Supported image file types include PNG (.png), JPEG (.jpeg and .jpg), WEBP (.webp), and non-animated GIF (.gif). |
| Image Size Limitations | Image uploads are restricted to 20MB per image. |
| Image Deletion | Uploaded images are automatically deleted after processing by the model. |
| Learning More | For more details about GPT-4 with Vision, refer to the GPT-4 with Vision system card. |
| CAPTCHA Submission | CAPTCHAs are blocked for safety reasons. |
| Rate Limits | Image processing counts toward your tokens per minute (TPM) limit. Refer to the calculating costs section for details. |
| Image Metadata | The model does not receive image metadata. |
| Handling Unclear Images | If an image is unclear, the model will do its best to interpret it, but results may be less accurate. |
```python
from swarms.models import GPT4VisionAPI
# Initialize with default API key and custom max_tokens
api = GPT4VisionAPI(max_tokens=1000)
# Define the task and image URL
task = "Describe the scene in the image."
img = "https://i.imgur.com/4P4ZRxU.jpeg"
## Additional Tips
# Run the GPT-4 Vision model
response = api.run(task, img)
- Make sure to handle potential exceptions and errors when making API requests. The library includes retries and error handling, but it's essential to handle exceptions gracefully in your code.
- Experiment with different configuration options to optimize the trade-off between response quality and response time based on your specific requirements.
# Print the model's response
print(response)
```
## References and Resources
## Additional Information<a name="additional-information"></a>
- [OpenAI Platform](https://beta.openai.com/signup/): Sign up for an OpenAI API key.
- [OpenAI API Documentation](https://platform.openai.com/docs/api-reference/chat/create): Official API documentation for the GPT-4 Vision model.
- If you encounter any errors or issues with the module, make sure to check your API key and internet connectivity.
- It's recommended to handle exceptions when using the module to gracefully handle errors.
- You can further customize the module to fit your specific use case by modifying the code as needed.
Now you have a comprehensive understanding of the GPT4Vision Model API, its configuration options, and how to use it for various computer vision and natural language processing tasks. Start experimenting and integrating it into your projects to leverage the power of GPT-4 Vision for image-related tasks.
## References<a name="references"></a>
# Conclusion
- [OpenAI API Documentation](https://beta.openai.com/docs/)
With GPT-4 Vision, you have a powerful tool for understanding and generating textual descriptions for images. By considering its capabilities, limitations, and cost calculations, you can effectively leverage this model for various image-related tasks.
This documentation provides a comprehensive guide on how to use the `GPT4VisionAPI` module effectively. It covers initialization, methods, usage examples, and additional information to ensure a smooth experience when working with the GPT-4 Vision model.

@ -0,0 +1,16 @@
from swarms.structs import Flow
from swarms.models.gpt4_vision_api import GPT4VisionAPI
llm = GPT4VisionAPI()
task = "What is the color of the object?"
img = "images/swarms.jpeg"
## Initialize the workflow
flow = Flow(
llm=llm,
max_loops="auto",
)
flow.run(task=task, img=img)

@ -1,28 +0,0 @@
import os
from dotenv import load_dotenv
from swarms.models.revgptV4 import RevChatGPTModel
from swarms.workers.worker import Worker
load_dotenv()
config = {
"model": os.getenv("REVGPT_MODEL"),
"plugin_ids": [os.getenv("REVGPT_PLUGIN_IDS")],
"disable_history": os.getenv("REVGPT_DISABLE_HISTORY") == "True",
"PUID": os.getenv("REVGPT_PUID"),
"unverified_plugin_domains": [
os.getenv("REVGPT_UNVERIFIED_PLUGIN_DOMAINS")
],
}
llm = RevChatGPTModel(access_token=os.getenv("ACCESS_TOKEN"), **config)
worker = Worker(ai_name="Optimus Prime", llm=llm)
task = (
"What were the winning boston marathon times for the past 5 years (ending"
" in 2022)? Generate a table of the year, name, country of origin, and"
" times."
)
response = worker.run(task)
print(response)

@ -0,0 +1,22 @@
from swarms.structs import Flow
from swarms.models.gpt4_vision_api import GPT4VisionAPI
llm = GPT4VisionAPI()
task = (
"Analyze this image of an assembly line and identify any issues such as"
" misaligned parts, defects, or deviations from the standard assembly"
" process. IF there is anything unsafe in the image, explain why it is"
" unsafe and how it could be improved."
)
img = "assembly_line.jpg"
## Initialize the workflow
flow = Flow(
llm=llm,
max_loops=1,
dashboard=True,
)
flow.run(task=task, img=img)

Binary file not shown.

After

Width:  |  Height:  |  Size: 532 KiB

@ -0,0 +1,20 @@
from swarms.structs import Flow
from swarms.models.gpt4_vision_api import GPT4VisionAPI
from swarms.prompts.multi_modal_autonomous_instruction_prompt import (
MULTI_MODAL_AUTO_AGENT_SYSTEM_PROMPT_1,
)
llm = GPT4VisionAPI()
task = "What is the color of the object?"
img = "images/swarms.jpeg"
## Initialize the workflow
flow = Flow(
llm=llm,
sop=MULTI_MODAL_AUTO_AGENT_SYSTEM_PROMPT_1,
max_loops="auto",
)
flow.run(task=task, img=img)

@ -1,33 +1,17 @@
from swarms.structs import Flow
from swarms.models import Idefics
from swarms.models.gpt4_vision_api import GPT4VisionAPI
# Multi Modality Auto Agent
llm = Idefics(max_length=2000)
task = (
"User: What is in this image?"
" https://upload.wikimedia.org/wikipedia/commons/8/86/Id%C3%A9fix.JPG"
)
llm = GPT4VisionAPI()
task = "What is the color of the object?"
img = "images/swarms.jpeg"
## Initialize the workflow
flow = Flow(
llm=llm,
max_loops=2,
max_loops="auto",
dashboard=True,
# stopping_condition=None, # You can define a stopping condition as needed.
# loop_interval=1,
# retry_attempts=3,
# retry_interval=1,
# interactive=False, # Set to 'True' for interactive mode.
# dynamic_temperature=False, # Set to 'True' for dynamic temperature handling.
)
# out = flow.load_state("flow_state.json")
# temp = flow.dynamic_temperature()
# filter = flow.add_response_filter("Trump")
out = flow.run(task)
# out = flow.validate_response(out)
# out = flow.analyze_feedback(out)
# out = flow.print_history_and_memory()
# # out = flow.save_state("flow_state.json")
# print(out)
flow.run(task=task, img=img)

@ -53,8 +53,8 @@ topic_selection_task = (
"Generate 10 topics on gaining mental clarity using ancient practices"
)
topics = llm(
f"Your System Instructions: {TOPIC_GENERATOR_SYSTEM_PROMPT}, Your current task:"
f" {topic_selection_task}"
f"Your System Instructions: {TOPIC_GENERATOR_SYSTEM_PROMPT}, Your current"
f" task: {topic_selection_task}"
)
dashboard = print(

@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry]
name = "swarms"
version = "2.4.0"
version = "2.4.1"
description = "Swarms - Pytorch"
license = "MIT"
authors = ["Kye Gomez <kye@apac.ai>"]

@ -20,15 +20,16 @@ from swarms.models.mpt import MPT7B # noqa: E402
# MultiModal Models
from swarms.models.idefics import Idefics # noqa: E402
# from swarms.models.kosmos_two import Kosmos # noqa: E402
from swarms.models.vilt import Vilt # noqa: E402
from swarms.models.nougat import Nougat # noqa: E402
from swarms.models.layoutlm_document_qa import LayoutLMDocumentQA # noqa: E402
from swarms.models.gpt4_vision_api import GPT4VisionAPI # noqa: E402
# from swarms.models.gpt4v import GPT4Vision
# from swarms.models.dalle3 import Dalle3
# from swarms.models.distilled_whisperx import DistilWhisperModel # noqa: E402
# from swarms.models.whisperx_model import WhisperX # noqa: E402
# from swarms.models.kosmos_two import Kosmos # noqa: E402
__all__ = [
"Anthropic",
@ -49,4 +50,6 @@ __all__ = [
"WizardLLMStoryTeller",
# "GPT4Vision",
# "Dalle3",
# "DistilWhisperModel",
"GPT4VisionAPI",
]

@ -185,11 +185,9 @@ def build_extra_kwargs(
if field_name in extra_kwargs:
raise ValueError(f"Found {field_name} supplied twice.")
if field_name not in all_required_field_names:
warnings.warn(
f"""WARNING! {field_name} is not default parameter.
warnings.warn(f"""WARNING! {field_name} is not default parameter.
{field_name} was transferred to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
Please confirm that {field_name} is what you intended.""")
extra_kwargs[field_name] = values.pop(field_name)
invalid_model_kwargs = all_required_field_names.intersection(

@ -0,0 +1,209 @@
import asyncio
import base64
import concurrent.futures
import time
from concurrent import ThreadPoolExecutor
from io import BytesIO
from typing import List, Optional, Tuple
import requests
from ABC import abstractmethod
from PIL import Image
class BaseMultiModalModel:
def __init__(
self,
model_name: Optional[str],
temperature: Optional[int] = 0.5,
max_tokens: Optional[int] = 500,
max_workers: Optional[int] = 10,
top_p: Optional[int] = 1,
top_k: Optional[int] = 50,
device: Optional[str] = "cuda",
max_new_tokens: Optional[int] = 500,
retries: Optional[int] = 3,
):
self.model_name = model_name
self.temperature = temperature
self.max_tokens = max_tokens
self.max_workers = max_workers
self.top_p = top_p
self.top_k = top_k
self.device = device
self.max_new_tokens = max_new_tokens
self.retries = retries
self.chat_history = []
@abstractmethod
def __call__(self, text: str, img: str):
"""Run the model"""
pass
def run(self, task: str, img: str):
"""Run the model"""
pass
async def arun(self, task: str, img: str):
"""Run the model asynchronously"""
pass
def get_img_from_web(self, img: str):
"""Get the image from the web"""
try:
response = requests.get(img)
response.raise_for_status()
image_pil = Image.open(BytesIO(response.content))
return image_pil
except requests.RequestException as error:
print(f"Error fetching image from {img} and error: {error}")
return None
def encode_img(self, img: str):
"""Encode the image to base64"""
with open(img, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
def get_img(self, img: str):
"""Get the image from the path"""
image_pil = Image.open(img)
return image_pil
def clear_chat_history(self):
"""Clear the chat history"""
self.chat_history = []
def run_many(
self,
tasks: List[str],
imgs: List[str],
):
"""
Run the model on multiple tasks and images all at once using concurrent
Args:
tasks (List[str]): List of tasks
imgs (List[str]): List of image paths
Returns:
List[str]: List of responses
"""
# Instantiate the thread pool executor
with ThreadPoolExecutor(max_workers=self.max_workers) as executor:
results = executor.map(self.run, tasks, imgs)
# Print the results for debugging
for result in results:
print(result)
def run_batch(self, tasks_images: List[Tuple[str, str]]) -> List[str]:
"""Process a batch of tasks and images"""
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(self.run, task, img)
for task, img in tasks_images
]
results = [future.result() for future in futures]
return results
async def run_batch_async(
self, tasks_images: List[Tuple[str, str]]
) -> List[str]:
"""Process a batch of tasks and images asynchronously"""
loop = asyncio.get_event_loop()
futures = [
loop.run_in_executor(None, self.run, task, img)
for task, img in tasks_images
]
return await asyncio.gather(*futures)
async def run_batch_async_with_retries(
self, tasks_images: List[Tuple[str, str]]
) -> List[str]:
"""Process a batch of tasks and images asynchronously with retries"""
loop = asyncio.get_event_loop()
futures = [
loop.run_in_executor(None, self.run_with_retries, task, img)
for task, img in tasks_images
]
return await asyncio.gather(*futures)
def unique_chat_history(self):
"""Get the unique chat history"""
return list(set(self.chat_history))
def run_with_retries(self, task: str, img: str):
"""Run the model with retries"""
for i in range(self.retries):
try:
return self.run(task, img)
except Exception as error:
print(f"Error with the request {error}")
continue
def run_batch_with_retries(self, tasks_images: List[Tuple[str, str]]):
"""Run the model with retries"""
for i in range(self.retries):
try:
return self.run_batch(tasks_images)
except Exception as error:
print(f"Error with the request {error}")
continue
def _tokens_per_second(self) -> float:
"""Tokens per second"""
elapsed_time = self.end_time - self.start_time
if elapsed_time == 0:
return float("inf")
return self._num_tokens() / elapsed_time
def _time_for_generation(self, task: str) -> float:
"""Time for Generation"""
self.start_time = time.time()
self.run(task)
self.end_time = time.time()
return self.end_time - self.start_time
@abstractmethod
def generate_summary(self, text: str) -> str:
"""Generate Summary"""
pass
def set_temperature(self, value: float):
"""Set Temperature"""
self.temperature = value
def set_max_tokens(self, value: int):
"""Set new max tokens"""
self.max_tokens = value
def get_generation_time(self) -> float:
"""Get generation time"""
if self.start_time and self.end_time:
return self.end_time - self.start_time
return 0
def get_chat_history(self):
"""Get the chat history"""
return self.chat_history
def get_unique_chat_history(self):
"""Get the unique chat history"""
return list(set(self.chat_history))
def get_chat_history_length(self):
"""Get the chat history length"""
return len(self.chat_history)
def get_unique_chat_history_length(self):
"""Get the unique chat history length"""
return len(list(set(self.chat_history)))
def get_chat_history_tokens(self):
"""Get the chat history tokens"""
return self._num_tokens()

@ -168,8 +168,10 @@ class Dalle3:
# Handling exceptions and printing the errors details
print(
colored(
(
f"Error running Dalle3: {error} try optimizing your api"
" key and or try again",
" key and or try again"
),
"red",
)
)
@ -231,8 +233,10 @@ class Dalle3:
except (Exception, openai.OpenAIError) as error:
print(
colored(
(
f"Error running Dalle3: {error} try optimizing your api"
" key and or try again",
" key and or try again"
),
"red",
)
)
@ -306,8 +310,10 @@ class Dalle3:
except Exception as error:
print(
colored(
(
f"Error running Dalle3: {error} try optimizing"
" your api key and or try again",
" your api key and or try again"
),
"red",
)
)

File diff suppressed because it is too large Load Diff

@ -63,9 +63,9 @@ class Fuyu:
def __call__(self, text: str, img: str):
"""Call the model with text and img paths"""
image_pil = Image.open(img)
img = self.get_img(img)
model_inputs = self.processor(
text=text, images=[image_pil], device=self.device_map
text=text, images=[img], device=self.device_map
)
for k, v in model_inputs.items():
@ -79,13 +79,13 @@ class Fuyu:
)
return print(str(text))
def get_img_from_web(self, img_url: str):
def get_img_from_web(self, img: str):
"""Get the image from the web"""
try:
response = requests.get(img_url)
response = requests.get(img)
response.raise_for_status()
image_pil = Image.open(BytesIO(response.content))
return image_pil
except requests.RequestException as error:
print(f"Error fetching image from {img_url} and error: {error}")
print(f"Error fetching image from {img} and error: {error}")
return None

@ -0,0 +1,291 @@
import asyncio
import base64
import concurrent.futures
from termcolor import colored
import json
import os
from concurrent.futures import ThreadPoolExecutor
from typing import List, Tuple
import aiohttp
import requests
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
openai_api_key = os.getenv("OPENAI_API_KEY")
class GPT4VisionAPI:
"""
GPT-4 Vision API
This class is a wrapper for the OpenAI API. It is used to run the GPT-4 Vision model.
Parameters
----------
openai_api_key : str
The OpenAI API key. Defaults to the OPENAI_API_KEY environment variable.
max_tokens : int
The maximum number of tokens to generate. Defaults to 300.
Methods
-------
encode_image(img: str)
Encode image to base64.
run(task: str, img: str)
Run the model.
__call__(task: str, img: str)
Run the model.
Examples:
---------
>>> from swarms.models import GPT4VisionAPI
>>> llm = GPT4VisionAPI()
>>> task = "What is the color of the object?"
>>> img = "https://i.imgur.com/2M2ZGwC.jpeg"
>>> llm.run(task, img)
"""
def __init__(
self,
openai_api_key: str = openai_api_key,
model_name: str = "gpt-4-vision-preview",
max_workers: int = 10,
max_tokens: str = 300,
openai_proxy: str = "https://api.openai.com/v1/chat/completions",
):
super().__init__()
self.openai_api_key = openai_api_key
self.model_name = model_name
self.max_workers = max_workers
self.max_tokens = max_tokens
self.openai_proxy = openai_proxy
def encode_image(self, img: str):
"""Encode image to base64."""
with open(img, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
def download_img_then_encode(self, img: str):
"""Download image from URL then encode image to base64 using requests"""
# Function to handle vision tasks
def run(self, task: str, img: str):
"""Run the model."""
try:
base64_image = self.encode_image(img)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}",
}
payload = {
"model": self.model_name,
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": task},
{
"type": "image_url",
"image_url": {
"url": (
f"data:image/jpeg;base64,{base64_image}"
)
},
},
],
}
],
"max_tokens": self.max_tokens,
}
response = requests.post(
"https://api.openai.com/v1/chat/completions",
headers=headers,
json=payload,
)
out = response.json()
content = out["choices"][0]["message"]["content"]
print(content)
except Exception as error:
print(f"Error with the request: {error}")
raise error
def __call__(self, task: str, img: str):
"""Run the model."""
try:
base64_image = self.encode_image(img)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}",
}
payload = {
"model": "gpt-4-vision-preview",
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": task},
{
"type": "image_url",
"image_url": {
"url": (
f"data:image/jpeg;base64,{base64_image}"
)
},
},
],
}
],
"max_tokens": self.max_tokens,
}
response = requests.post(
self.openai_proxy,
headers=headers,
json=payload,
)
out = response.json()
content = out["choices"][0]["message"]["content"]
print(content)
except Exception as error:
print(f"Error with the request: {error}")
raise error
# Function to handle vision tasks
def run_many(
self,
tasks: List[str],
imgs: List[str],
):
"""
Run the model on multiple tasks and images all at once using concurrent
"""
# Instantiate the thread pool executor
with ThreadPoolExecutor(max_workers=self.max_workers) as executor:
results = executor.map(self.run, tasks, imgs)
# Print the results for debugging
for result in results:
print(result)
return list(results)
async def arun(
self,
task: str,
img: str,
):
"""
Asynchronously run the model
Overview:
---------
This method is used to asynchronously run the model. It is used to run the model
on a single task and image.
Parameters:
----------
task : str
The task to run the model on.
img : str
The image to run the task on
"""
try:
base64_image = self.encode_image(img)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}",
}
payload = {
"model": "gpt-4-vision-preview",
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": task},
{
"type": "image_url",
"image_url": {
"url": (
f"data:image/jpeg;base64,{base64_image}"
)
},
},
],
}
],
"max_tokens": self.max_tokens,
}
async with aiohttp.ClientSession() as session:
async with session.post(
self.openai_proxy, headers=headers, data=json.dumps(payload)
) as response:
out = await response.json()
content = out["choices"][0]["message"]["content"]
print(content)
except Exception as error:
print(f"Error with the request {error}")
raise error
def run_batch(self, tasks_images: List[Tuple[str, str]]) -> List[str]:
"""Process a batch of tasks and images"""
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(self.run, task, img)
for task, img in tasks_images
]
results = [future.result() for future in futures]
return results
async def run_batch_async(
self, tasks_images: List[Tuple[str, str]]
) -> List[str]:
"""Process a batch of tasks and images asynchronously"""
loop = asyncio.get_event_loop()
futures = [
loop.run_in_executor(None, self.run, task, img)
for task, img in tasks_images
]
return await asyncio.gather(*futures)
async def run_batch_async_with_retries(
self, tasks_images: List[Tuple[str, str]]
) -> List[str]:
"""Process a batch of tasks and images asynchronously with retries"""
loop = asyncio.get_event_loop()
futures = [
loop.run_in_executor(None, self.run_with_retries, task, img)
for task, img in tasks_images
]
return await asyncio.gather(*futures)
def health_check(self):
"""Health check for the GPT4Vision model"""
try:
response = requests.get("https://api.openai.com/v1/engines")
return response.status_code == 200
except requests.RequestException as error:
print(f"Health check failed: {error}")
return False
def print_dashboard(self):
dashboard = print(
colored(
f"""
GPT4Vision Dashboard
-------------------
Model: {self.model_name}
Max Workers: {self.max_workers}
OpenAIProxy: {self.openai_proxy}
""",
"green",
)
)
return dashboard

@ -291,8 +291,10 @@ class HuggingfaceLLM:
except Exception as e:
print(
colored(
(
"HuggingfaceLLM could not generate text because of"
f" error: {e}, try optimizing your arguments",
f" error: {e}, try optimizing your arguments"
),
"red",
)
)

@ -18,38 +18,31 @@ def is_overlapping(rect1, rect2):
class Kosmos:
"""
Kosmos model by Yen-Chun Shieh
Args:
# Initialize Kosmos
kosmos = Kosmos()
# Perform multimodal grounding
kosmos.multimodal_grounding("Find the red apple in the image.", "https://example.com/apple.jpg")
# Perform referring expression comprehension
kosmos.referring_expression_comprehension("Show me the green bottle.", "https://example.com/bottle.jpg")
# Generate referring expressions
kosmos.referring_expression_generation("It is on the table.", "https://example.com/table.jpg")
Parameters
----------
model_name : str
Path to the pretrained model
# Perform grounded visual question answering
kosmos.grounded_vqa("What is the color of the car?", "https://example.com/car.jpg")
Examples
--------
>>> kosmos = Kosmos()
>>> kosmos("Hello, my name is", "path/to/image.png")
# Generate grounded image caption
kosmos.grounded_image_captioning("https://example.com/beach.jpg")
"""
def __init__(
self,
model_name="ydshieh/kosmos-2-patch14-224",
*args,
**kwargs,
):
self.model = AutoModelForVision2Seq.from_pretrained(
model_name, trust_remote_code=True
model_name, trust_remote_code=True, *args, **kwargs
)
self.processor = AutoProcessor.from_pretrained(
model_name, trust_remote_code=True
model_name, trust_remote_code=True, *args, **kwargs
)
def get_image(self, url):

@ -140,8 +140,10 @@ class SSD1B:
# Handling exceptions and printing the errors details
print(
colored(
(
f"Error running SSD1B: {error} try optimizing your api"
" key and or try again",
" key and or try again"
),
"red",
)
)
@ -226,8 +228,10 @@ class SSD1B:
except Exception as error:
print(
colored(
(
f"Error running SSD1B: {error} try optimizing"
" your api key and or try again",
" your api key and or try again"
),
"red",
)
)

@ -2,7 +2,7 @@ import os
import subprocess
try:
import whisperx
import swarms.models.whisperx_model as whisperx_model
from pydub import AudioSegment
from pytube import YouTube
except Exception as error:
@ -66,17 +66,17 @@ class WhisperX:
compute_type = "float16"
# 1. Transcribe with original Whisper (batched) 🗣️
model = whisperx.load_model(
model = whisperx_model.load_model(
"large-v2", device, compute_type=compute_type
)
audio = whisperx.load_audio(audio_file)
audio = whisperx_model.load_audio(audio_file)
result = model.transcribe(audio, batch_size=batch_size)
# 2. Align Whisper output 🔍
model_a, metadata = whisperx.load_align_model(
model_a, metadata = whisperx_model.load_align_model(
language_code=result["language"], device=device
)
result = whisperx.align(
result = whisperx_model.align(
result["segments"],
model_a,
metadata,
@ -86,7 +86,7 @@ class WhisperX:
)
# 3. Assign speaker labels 🏷️
diarize_model = whisperx.DiarizationPipeline(
diarize_model = whisperx_model.DiarizationPipeline(
use_auth_token=self.hf_api_key, device=device
)
diarize_model(audio_file)
@ -99,16 +99,16 @@ class WhisperX:
print("The key 'segments' is not found in the result.")
def transcribe(self, audio_file):
model = whisperx.load_model("large-v2", self.device, self.compute_type)
audio = whisperx.load_audio(audio_file)
model = whisperx_model.load_model("large-v2", self.device, self.compute_type)
audio = whisperx_model.load_audio(audio_file)
result = model.transcribe(audio, batch_size=self.batch_size)
# 2. Align Whisper output 🔍
model_a, metadata = whisperx.load_align_model(
model_a, metadata = whisperx_model.load_align_model(
language_code=result["language"], device=self.device
)
result = whisperx.align(
result = whisperx_model.align(
result["segments"],
model_a,
metadata,
@ -118,7 +118,7 @@ class WhisperX:
)
# 3. Assign speaker labels 🏷️
diarize_model = whisperx.DiarizationPipeline(
diarize_model = whisperx_model.DiarizationPipeline(
use_auth_token=self.hf_api_key, device=self.device
)

@ -274,5 +274,3 @@ Check Accuracy:
- Flag any bold claims that lack credible evidence for fact-checker review.
"""

@ -489,14 +489,16 @@ class Flow:
except Exception as error:
print(
colored(
(
"Error activating autonomous agent. Try optimizing your"
" parameters...",
" parameters..."
),
"red",
)
)
print(error)
def run(self, task: str, **kwargs):
def run(self, task: str, img: Optional[str], **kwargs):
"""
Run the autonomous agent loop
@ -550,6 +552,13 @@ class Flow:
attempt = 0
while attempt < self.retry_attempts:
try:
if img:
response = self.llm(
task,
img,
**kwargs,
)
else:
response = self.llm(
task,
**kwargs,

@ -385,9 +385,11 @@ class SequentialWorkflow:
except Exception as e:
print(
colored(
(
f"Error initializing the Sequential workflow: {e} try"
" optimizing your inputs like the flow class and task"
" description",
" description"
),
"red",
attrs=["bold", "underline"],
)

@ -0,0 +1,238 @@
import asyncio
import os
from unittest.mock import AsyncMock, Mock, mock_open, patch
from aiohttp import ClientResponseError
import pytest
from dotenv import load_dotenv
from requests.exceptions import RequestException
from swarms.models.gpt4_vision_api import GPT4VisionAPI
load_dotenv()
custom_api_key = os.environ.get("OPENAI_API_KEY")
img = "images/swarms.jpeg"
@pytest.fixture
def vision_api():
return GPT4VisionAPI(openai_api_key="test_api_key")
def test_init(vision_api):
assert vision_api.openai_api_key == "test_api_key"
def test_encode_image(vision_api):
with patch(
"builtins.open", mock_open(read_data=b"test_image_data"), create=True
):
encoded_image = vision_api.encode_image(img)
assert encoded_image == "dGVzdF9pbWFnZV9kYXRh"
def test_run_success(vision_api):
expected_response = {"choices": [{"text": "This is the model's response."}]}
with patch(
"requests.post", return_value=Mock(json=lambda: expected_response)
) as mock_post:
result = vision_api.run("What is this?", img)
mock_post.assert_called_once()
assert result == "This is the model's response."
def test_run_request_error(vision_api):
with patch(
"requests.post", side_effect=RequestException("Request Error")
) as mock_post:
with pytest.raises(RequestException):
vision_api.run("What is this?", img)
def test_run_response_error(vision_api):
expected_response = {"error": "Model Error"}
with patch(
"requests.post", return_value=Mock(json=lambda: expected_response)
) as mock_post:
with pytest.raises(RuntimeError):
vision_api.run("What is this?", img)
def test_call(vision_api):
expected_response = {"choices": [{"text": "This is the model's response."}]}
with patch(
"requests.post", return_value=Mock(json=lambda: expected_response)
) as mock_post:
result = vision_api("What is this?", img)
mock_post.assert_called_once()
assert result == "This is the model's response."
@pytest.fixture
def gpt_api():
return GPT4VisionAPI()
def test_initialization_with_default_key():
api = GPT4VisionAPI()
assert api.openai_api_key == custom_api_key
def test_initialization_with_custom_key():
custom_key = custom_api_key
api = GPT4VisionAPI(openai_api_key=custom_key)
assert api.openai_api_key == custom_key
def test_run_successful_response(gpt_api):
task = "What is in the image?"
img_url = img
response_json = {"choices": [{"text": "Answer from GPT-4 Vision"}]}
mock_response = Mock()
mock_response.json.return_value = response_json
with patch("requests.post", return_value=mock_response) as mock_post:
result = gpt_api.run(task, img_url)
mock_post.assert_called_once()
assert result == response_json["choices"][0]["text"]
def test_run_with_exception(gpt_api):
task = "What is in the image?"
img_url = img
with patch("requests.post", side_effect=Exception("Test Exception")):
with pytest.raises(Exception):
gpt_api.run(task, img_url)
def test_call_method_successful_response(gpt_api):
task = "What is in the image?"
img_url = img
response_json = {"choices": [{"text": "Answer from GPT-4 Vision"}]}
mock_response = Mock()
mock_response.json.return_value = response_json
with patch("requests.post", return_value=mock_response) as mock_post:
result = gpt_api(task, img_url)
mock_post.assert_called_once()
assert result == response_json
def test_call_method_with_exception(gpt_api):
task = "What is in the image?"
img_url = img
with patch("requests.post", side_effect=Exception("Test Exception")):
with pytest.raises(Exception):
gpt_api(task, img_url)
@pytest.mark.asyncio
async def test_arun_success(vision_api):
expected_response = {
"choices": [{"message": {"content": "This is the model's response."}}]
}
with patch(
"aiohttp.ClientSession.post",
new_callable=AsyncMock,
return_value=AsyncMock(json=AsyncMock(return_value=expected_response)),
) as mock_post:
result = await vision_api.arun("What is this?", img)
mock_post.assert_called_once()
assert result == "This is the model's response."
@pytest.mark.asyncio
async def test_arun_request_error(vision_api):
with patch(
"aiohttp.ClientSession.post",
new_callable=AsyncMock,
side_effect=Exception("Request Error"),
) as mock_post:
with pytest.raises(Exception):
await vision_api.arun("What is this?", img)
def test_run_many_success(vision_api):
expected_response = {
"choices": [{"message": {"content": "This is the model's response."}}]
}
with patch(
"requests.post", return_value=Mock(json=lambda: expected_response)
) as mock_post:
tasks = ["What is this?", "What is that?"]
imgs = [img, img]
results = vision_api.run_many(tasks, imgs)
assert mock_post.call_count == 2
assert results == [
"This is the model's response.",
"This is the model's response.",
]
def test_run_many_request_error(vision_api):
with patch(
"requests.post", side_effect=RequestException("Request Error")
) as mock_post:
tasks = ["What is this?", "What is that?"]
imgs = [img, img]
with pytest.raises(RequestException):
vision_api.run_many(tasks, imgs)
@pytest.mark.asyncio
async def test_arun_json_decode_error(vision_api):
with patch(
"aiohttp.ClientSession.post",
new_callable=AsyncMock,
return_value=AsyncMock(json=AsyncMock(side_effect=ValueError)),
) as mock_post:
with pytest.raises(ValueError):
await vision_api.arun("What is this?", img)
@pytest.mark.asyncio
async def test_arun_api_error(vision_api):
error_response = {"error": {"message": "API Error"}}
with patch(
"aiohttp.ClientSession.post",
new_callable=AsyncMock,
return_value=AsyncMock(json=AsyncMock(return_value=error_response)),
) as mock_post:
with pytest.raises(Exception, match="API Error"):
await vision_api.arun("What is this?", img)
@pytest.mark.asyncio
async def test_arun_unexpected_response(vision_api):
unexpected_response = {"unexpected": "response"}
with patch(
"aiohttp.ClientSession.post",
new_callable=AsyncMock,
return_value=AsyncMock(
json=AsyncMock(return_value=unexpected_response)
),
) as mock_post:
with pytest.raises(Exception, match="Unexpected response"):
await vision_api.arun("What is this?", img)
@pytest.mark.asyncio
async def test_arun_retries(vision_api):
with patch(
"aiohttp.ClientSession.post",
new_callable=AsyncMock,
side_effect=ClientResponseError(None, None),
) as mock_post:
with pytest.raises(ClientResponseError):
await vision_api.arun("What is this?", img)
assert mock_post.call_count == vision_api.retries + 1
@pytest.mark.asyncio
async def test_arun_timeout(vision_api):
with patch(
"aiohttp.ClientSession.post",
new_callable=AsyncMock,
side_effect=asyncio.TimeoutError,
) as mock_post:
with pytest.raises(asyncio.TimeoutError):
await vision_api.arun("What is this?", img)

@ -1,93 +0,0 @@
import unittest
from unittest.mock import patch
from RevChatGPTModelv4 import RevChatGPTModelv4
class TestRevChatGPT(unittest.TestCase):
def setUp(self):
self.access_token = "123"
self.model = RevChatGPTModelv4(access_token=self.access_token)
def test_run(self):
prompt = "What is the capital of France?"
self.model.start_time = 10
self.model.end_time = 20
response = self.model.run(prompt)
self.assertEqual(response, "The capital of France is Paris.")
self.assertEqual(self.model.start_time, 10)
self.assertEqual(self.model.end_time, 20)
def test_generate_summary(self):
text = "Hello world. This is some text. It has multiple sentences."
summary = self.model.generate_summary(text)
self.assertEqual(summary, "")
@patch("RevChatGPTModelv4.Chatbot.install_plugin")
def test_enable_plugin(self, mock_install_plugin):
plugin_id = "plugin123"
self.model.enable_plugin(plugin_id)
mock_install_plugin.assert_called_with(plugin_id=plugin_id)
@patch("RevChatGPTModelv4.Chatbot.get_plugins")
def test_list_plugins(self, mock_get_plugins):
mock_get_plugins.return_value = [{"id": "123", "name": "Test Plugin"}]
plugins = self.model.list_plugins()
self.assertEqual(len(plugins), 1)
self.assertEqual(plugins[0]["id"], "123")
self.assertEqual(plugins[0]["name"], "Test Plugin")
@patch("RevChatGPTModelv4.Chatbot.get_conversations")
def test_get_conversations(self, mock_get_conversations):
self.model.chatbot.get_conversations()
mock_get_conversations.assert_called()
@patch("RevChatGPTModelv4.Chatbot.get_msg_history")
def test_get_msg_history(self, mock_get_msg_history):
convo_id = "123"
self.model.chatbot.get_msg_history(convo_id)
mock_get_msg_history.assert_called_with(convo_id)
@patch("RevChatGPTModelv4.Chatbot.share_conversation")
def test_share_conversation(self, mock_share_conversation):
self.model.chatbot.share_conversation()
mock_share_conversation.assert_called()
@patch("RevChatGPTModelv4.Chatbot.gen_title")
def test_gen_title(self, mock_gen_title):
convo_id = "123"
message_id = "456"
self.model.chatbot.gen_title(convo_id, message_id)
mock_gen_title.assert_called_with(convo_id, message_id)
@patch("RevChatGPTModelv4.Chatbot.change_title")
def test_change_title(self, mock_change_title):
convo_id = "123"
title = "New Title"
self.model.chatbot.change_title(convo_id, title)
mock_change_title.assert_called_with(convo_id, title)
@patch("RevChatGPTModelv4.Chatbot.delete_conversation")
def test_delete_conversation(self, mock_delete_conversation):
convo_id = "123"
self.model.chatbot.delete_conversation(convo_id)
mock_delete_conversation.assert_called_with(convo_id)
@patch("RevChatGPTModelv4.Chatbot.clear_conversations")
def test_clear_conversations(self, mock_clear_conversations):
self.model.chatbot.clear_conversations()
mock_clear_conversations.assert_called()
@patch("RevChatGPTModelv4.Chatbot.rollback_conversation")
def test_rollback_conversation(self, mock_rollback_conversation):
num = 2
self.model.chatbot.rollback_conversation(num)
mock_rollback_conversation.assert_called_with(num)
@patch("RevChatGPTModelv4.Chatbot.reset_chat")
def test_reset_chat(self, mock_reset_chat):
self.model.chatbot.reset_chat()
mock_reset_chat.assert_called()
if __name__ == "__main__":
unittest.main()

@ -7,7 +7,7 @@ import pytest
import whisperx
from pydub import AudioSegment
from pytube import YouTube
from swarms.models.whisperx import WhisperX
from swarms.models.whisperx_model import WhisperX
# Fixture to create a temporary directory for testing

Loading…
Cancel
Save