re-architecture simplification, things might break excuse me

pull/25/head
Kye 1 year ago
parent 4bca1d51cf
commit e9ef2789bd

@ -4,7 +4,7 @@ from setuptools import setup, find_packages
setup( setup(
name = 'swarms', name = 'swarms',
packages = find_packages(exclude=[]), packages = find_packages(exclude=[]),
version = '1.0.0', version = '1.0.1',
license='MIT', license='MIT',
description = 'Swarms - Pytorch', description = 'Swarms - Pytorch',
author = 'Kye Gomez', author = 'Kye Gomez',

@ -1,6 +1,7 @@
# from swarms import Swarms, swarm # from swarms import Swarms, swarm
from swarms.swarms import Swarms, swarm from swarms.swarms import Swarms, swarm
from swarms.agents import worker_node from swarms.workers import worker_node
from swarms.agents.workers.worker_ultra_node import WorkerUltraNode, WorkerUltra from swarms.workers.worker_ultra_node import WorkerUltraNode, WorkerUltra
from swarms.agents.workers.worker_agent_ultra import worker_ultra_node from swarms.workers.worker_agent_ultra import worker_ultra_node
from swarms.agents.workers.WorkerNode import WorkerNode, worker_node from swarms.workers.WorkerNode import WorkerNode, worker_node
from swarms.boss.boss_node import BossNode

@ -0,0 +1,340 @@
"""Chain that just formats a prompt and calls an LLM."""
from __future__ import annotations
import warnings
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
from pydantic import Extra, Field
from langchain.callbacks.manager import (
AsyncCallbackManager,
AsyncCallbackManagerForChainRun,
CallbackManager,
CallbackManagerForChainRun,
Callbacks,
)
from langchain.chains.base import Chain
from langchain.input import get_colored_text
from langchain.load.dump import dumpd
from langchain.prompts.prompt import PromptTemplate
from langchain.schema import (
BaseLLMOutputParser,
BasePromptTemplate,
LLMResult,
NoOpOutputParser,
PromptValue,
)
from langchain.schema.language_model import BaseLanguageModel
class LLMChain(Chain):
"""Chain to run queries against LLMs.
Example:
.. code-block:: python
from langchain import LLMChain, OpenAI, PromptTemplate
prompt_template = "Tell me a {adjective} joke"
prompt = PromptTemplate(
input_variables=["adjective"], template=prompt_template
)
llm = LLMChain(llm=OpenAI(), prompt=prompt)
"""
@property
def lc_serializable(self) -> bool:
return True
prompt: BasePromptTemplate
"""Prompt object to use."""
llm: BaseLanguageModel
"""Language model to call."""
output_key: str = "text" #: :meta private:
output_parser: BaseLLMOutputParser = Field(default_factory=NoOpOutputParser)
"""Output parser to use.
Defaults to one that takes the most likely string but does not change it
otherwise."""
return_final_only: bool = True
"""Whether to return only the final parsed result. Defaults to True.
If false, will return a bunch of extra information about the generation."""
llm_kwargs: dict = Field(default_factory=dict)
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@property
def input_keys(self) -> List[str]:
"""Will be whatever keys the prompt expects.
:meta private:
"""
return self.prompt.input_variables
@property
def output_keys(self) -> List[str]:
"""Will always return text key.
:meta private:
"""
if self.return_final_only:
return [self.output_key]
else:
return [self.output_key, "full_generation"]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
response = self.generate([inputs], run_manager=run_manager)
return self.create_outputs(response)[0]
def generate(
self,
input_list: List[Dict[str, Any]],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> LLMResult:
"""Generate LLM result from inputs."""
prompts, stop = self.prep_prompts(input_list, run_manager=run_manager)
return self.llm.generate_prompt(
prompts,
stop,
callbacks=run_manager.get_child() if run_manager else None,
**self.llm_kwargs,
)
async def agenerate(
self,
input_list: List[Dict[str, Any]],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> LLMResult:
"""Generate LLM result from inputs."""
prompts, stop = await self.aprep_prompts(input_list, run_manager=run_manager)
return await self.llm.agenerate_prompt(
prompts,
stop,
callbacks=run_manager.get_child() if run_manager else None,
**self.llm_kwargs,
)
def prep_prompts(
self,
input_list: List[Dict[str, Any]],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Tuple[List[PromptValue], Optional[List[str]]]:
"""Prepare prompts from inputs."""
stop = None
if "stop" in input_list[0]:
stop = input_list[0]["stop"]
prompts = []
for inputs in input_list:
selected_inputs = {k: inputs[k] for k in self.prompt.input_variables}
prompt = self.prompt.format_prompt(**selected_inputs)
_colored_text = get_colored_text(prompt.to_string(), "green")
_text = "Prompt after formatting:\n" + _colored_text
if run_manager:
run_manager.on_text(_text, end="\n", verbose=self.verbose)
if "stop" in inputs and inputs["stop"] != stop:
raise ValueError(
"If `stop` is present in any inputs, should be present in all."
)
prompts.append(prompt)
return prompts, stop
async def aprep_prompts(
self,
input_list: List[Dict[str, Any]],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Tuple[List[PromptValue], Optional[List[str]]]:
"""Prepare prompts from inputs."""
stop = None
if "stop" in input_list[0]:
stop = input_list[0]["stop"]
prompts = []
for inputs in input_list:
selected_inputs = {k: inputs[k] for k in self.prompt.input_variables}
prompt = self.prompt.format_prompt(**selected_inputs)
_colored_text = get_colored_text(prompt.to_string(), "green")
_text = "Prompt after formatting:\n" + _colored_text
if run_manager:
await run_manager.on_text(_text, end="\n", verbose=self.verbose)
if "stop" in inputs and inputs["stop"] != stop:
raise ValueError(
"If `stop` is present in any inputs, should be present in all."
)
prompts.append(prompt)
return prompts, stop
def apply(
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
) -> List[Dict[str, str]]:
"""Utilize the LLM generate method for speed gains."""
callback_manager = CallbackManager.configure(
callbacks, self.callbacks, self.verbose
)
run_manager = callback_manager.on_chain_start(
dumpd(self),
{"input_list": input_list},
)
try:
response = self.generate(input_list, run_manager=run_manager)
except (KeyboardInterrupt, Exception) as e:
run_manager.on_chain_error(e)
raise e
outputs = self.create_outputs(response)
run_manager.on_chain_end({"outputs": outputs})
return outputs
async def aapply(
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
) -> List[Dict[str, str]]:
"""Utilize the LLM generate method for speed gains."""
callback_manager = AsyncCallbackManager.configure(
callbacks, self.callbacks, self.verbose
)
run_manager = await callback_manager.on_chain_start(
dumpd(self),
{"input_list": input_list},
)
try:
response = await self.agenerate(input_list, run_manager=run_manager)
except (KeyboardInterrupt, Exception) as e:
await run_manager.on_chain_error(e)
raise e
outputs = self.create_outputs(response)
await run_manager.on_chain_end({"outputs": outputs})
return outputs
@property
def _run_output_key(self) -> str:
return self.output_key
def create_outputs(self, llm_result: LLMResult) -> List[Dict[str, Any]]:
"""Create outputs from response."""
result = [
# Get the text of the top generated string.
{
self.output_key: self.output_parser.parse_result(generation),
"full_generation": generation,
}
for generation in llm_result.generations
]
if self.return_final_only:
result = [{self.output_key: r[self.output_key]} for r in result]
return result
async def _acall(
self,
inputs: Dict[str, Any],
run_manager: Optional[AsyncCallbackManagerForChainRun] = None,
) -> Dict[str, str]:
response = await self.agenerate([inputs], run_manager=run_manager)
return self.create_outputs(response)[0]
def predict(self, callbacks: Callbacks = None, **kwargs: Any) -> str:
"""Format prompt with kwargs and pass to LLM.
Args:
callbacks: Callbacks to pass to LLMChain
**kwargs: Keys to pass to prompt template.
Returns:
Completion from LLM.
Example:
.. code-block:: python
completion = llm.predict(adjective="funny")
"""
return self(kwargs, callbacks=callbacks)[self.output_key]
async def apredict(self, callbacks: Callbacks = None, **kwargs: Any) -> str:
"""Format prompt with kwargs and pass to LLM.
Args:
callbacks: Callbacks to pass to LLMChain
**kwargs: Keys to pass to prompt template.
Returns:
Completion from LLM.
Example:
.. code-block:: python
completion = llm.predict(adjective="funny")
"""
return (await self.acall(kwargs, callbacks=callbacks))[self.output_key]
def predict_and_parse(
self, callbacks: Callbacks = None, **kwargs: Any
) -> Union[str, List[str], Dict[str, Any]]:
"""Call predict and then parse the results."""
warnings.warn(
"The predict_and_parse method is deprecated, "
"instead pass an output parser directly to LLMChain."
)
result = self.predict(callbacks=callbacks, **kwargs)
if self.prompt.output_parser is not None:
return self.prompt.output_parser.parse(result)
else:
return result
async def apredict_and_parse(
self, callbacks: Callbacks = None, **kwargs: Any
) -> Union[str, List[str], Dict[str, str]]:
"""Call apredict and then parse the results."""
warnings.warn(
"The apredict_and_parse method is deprecated, "
"instead pass an output parser directly to LLMChain."
)
result = await self.apredict(callbacks=callbacks, **kwargs)
if self.prompt.output_parser is not None:
return self.prompt.output_parser.parse(result)
else:
return result
def apply_and_parse(
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
) -> Sequence[Union[str, List[str], Dict[str, str]]]:
"""Call apply and then parse the results."""
warnings.warn(
"The apply_and_parse method is deprecated, "
"instead pass an output parser directly to LLMChain."
)
result = self.apply(input_list, callbacks=callbacks)
return self._parse_generation(result)
def _parse_generation(
self, generation: List[Dict[str, str]]
) -> Sequence[Union[str, List[str], Dict[str, str]]]:
if self.prompt.output_parser is not None:
return [
self.prompt.output_parser.parse(res[self.output_key])
for res in generation
]
else:
return generation
async def aapply_and_parse(
self, input_list: List[Dict[str, Any]], callbacks: Callbacks = None
) -> Sequence[Union[str, List[str], Dict[str, str]]]:
"""Call apply and then parse the results."""
warnings.warn(
"The aapply_and_parse method is deprecated, "
"instead pass an output parser directly to LLMChain."
)
result = await self.aapply(input_list, callbacks=callbacks)
return self._parse_generation(result)
@property
def _chain_type(self) -> str:
return "llm_chain"
@classmethod
def from_string(cls, llm: BaseLanguageModel, template: str) -> LLMChain:
"""Create LLMChain from LLM and template."""
prompt_template = PromptTemplate.from_template(template)
return cls(llm=llm, prompt=prompt_template)

@ -1,99 +0,0 @@
from langchain import OpenAI, LLMChain, PromptTemplate
from langchain.memory import ConversationBufferWindowMemory
def initialize_chain(instructions, memory=None):
if memory is None:
memory = ConversationBufferWindowMemory()
memory.ai_prefix = "Assistant"
template = f"""
Instructions: {instructions}
{{{memory.memory_key}}}
Human: {{human_input}}
Assistant:"""
prompt = PromptTemplate(
input_variables=["history", "human_input"], template=template
)
chain = LLMChain(
llm=OpenAI(temperature=0),
prompt=prompt,
verbose=True,
memory=ConversationBufferWindowMemory(),
)
return chain
def initialize_meta_chain():
meta_template = """
Assistant has just had the below interactions with a User. Assistant followed their "Instructions" closely. Your job is to critique the Assistant's performance and then revise the Instructions so that Assistant would quickly and correctly respond in the future.
####
{chat_history}
####
Please reflect on these interactions.
You should first critique Assistant's performance. What could Assistant have done better? What should the Assistant remember about this user? Are there things this user always wants? Indicate this with "Critique: ...".
You should next revise the Instructions so that Assistant would quickly and correctly respond in the future. Assistant's goal is to satisfy the user in as few interactions as possible. Assistant will only see the new Instructions, not the interaction history, so anything important must be summarized in the Instructions. Don't forget any important details in the current Instructions! Indicate the new Instructions by "Instructions: ...".
"""
meta_prompt = PromptTemplate(
input_variables=["chat_history"], template=meta_template
)
meta_chain = LLMChain(
llm=OpenAI(temperature=0),
prompt=meta_prompt,
verbose=True,
)
return meta_chain
def get_chat_history(chain_memory):
memory_key = chain_memory.memory_key
chat_history = chain_memory.load_memory_variables(memory_key)[memory_key]
return chat_history
def get_new_instructions(meta_output):
delimiter = "Instructions: "
new_instructions = meta_output[meta_output.find(delimiter) + len(delimiter) :]
return new_instructions
def meta_agent(task, max_iters=3, max_meta_iters=5):
failed_phrase = "task failed"
success_phrase = "task succeeded"
key_phrases = [success_phrase, failed_phrase]
instructions = "None"
for i in range(max_meta_iters):
print(f"[Episode {i+1}/{max_meta_iters}]")
chain = initialize_chain(instructions, memory=None)
output = chain.predict(human_input=task)
for j in range(max_iters):
print(f"(Step {j+1}/{max_iters})")
print(f"Assistant: {output}")
print(f"Human: ")
human_input = input()
if any(phrase in human_input.lower() for phrase in key_phrases):
break
output = chain.predict(human_input=human_input)
if success_phrase in human_input.lower():
print(f"You succeeded! Thanks for playing!")
return
meta_chain = initialize_meta_chain()
meta_output = meta_chain.predict(chat_history=get_chat_history(chain.memory))
print(f"Feedback: {meta_output}")
instructions = get_new_instructions(meta_output)
print(f"New Instructions: {instructions}")
print("\n" + "#" * 80 + "\n")
print(f"You failed! Thanks for playing!")
task = "Provide a systematic argument for why we should always eat pasta with olives."
meta_agent(task)

@ -1 +0,0 @@
from swarms.agents.workers.multi_modal_workers.omni_agent.omni_chat import chat_huggingface

@ -3,9 +3,9 @@ import asyncio
# from swarms.agents.tools.agent_tools import * # from swarms.agents.tools.agent_tools import *
from swarms.agents.tools.agent_tools import * from swarms.agents.tools.agent_tools import *
from swarms.agents.workers.WorkerNode import WorkerNodeInitializer, worker_node from swarms.workers.WorkerNode import WorkerNodeInitializer, worker_node
from swarms.agents.boss.BossNode import BossNodeInitializer as BossNode from swarms.boss.boss_node import BossNodeInitializer as BossNode
from swarms.agents.workers.worker_ultra_node import WorkerUltra from swarms.workers.worker_ultra_node import WorkerUltra
from langchain import LLMMathChain from langchain import LLMMathChain

@ -104,7 +104,7 @@ from langchain.vectorstores import FAISS
from langchain.docstore import InMemoryDocstore from langchain.docstore import InMemoryDocstore
from langchain.embeddings import OpenAIEmbeddings from langchain.embeddings import OpenAIEmbeddings
import faiss import faiss
from swarms.agents.workers.auto_agent import AutoGPT from swarms.workers.auto_agent import AutoGPT
from collections import deque from collections import deque
from typing import Dict, Any from typing import Dict, Any

@ -0,0 +1,268 @@
import re
from datetime import datetime
from typing import Any, Dict, List, Optional, Tuple
from pydantic import BaseModel, Field
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.experimental.generative_agents.memory import GenerativeAgentMemory
from swarms.utils.schema.base import BaseLanguageModel
# TODO: Add ability to integrate with tools
# TODO: Replace with f strings and all PromptTemplate
class WorkerCharacterAgent(BaseModel):
"""A character with memory and innate characteristics."""
name: str
"""The character's name."""
age: Optional[int] = None
"""The optional age of the character."""
traits: str = "N/A"
"""Permanent traits to ascribe to the character."""
status: str
"""The traits of the character you wish not to change."""
memory: GenerativeAgentMemory
"""The memory object that combines relevance, recency, and 'importance'."""
llm: BaseLanguageModel
"""The underlying language model."""
verbose: bool = False
summary: str = "" #: :meta private:
"""Stateful self-summary generated via reflection on the character's memory."""
summary_refresh_seconds: int = 3600 #: :meta private:
"""How frequently to re-generate the summary."""
last_refreshed: datetime = Field(default_factory=datetime.now) # : :meta private:
"""The last time the character's summary was regenerated."""
daily_summaries: List[str] = Field(default_factory=list) # : :meta private:
"""Summary of the events in the plan that the agent took."""
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
# LLM-related methods
@staticmethod
def _parse_list(text: str) -> List[str]:
"""Parse a newline-separated string into a list of strings."""
lines = re.split(r"\n", text.strip())
return [re.sub(r"^\s*\d+\.\s*", "", line).strip() for line in lines]
def chain(self, prompt: str) -> LLMChain:
return LLMChain(
llm=self.llm, prompt=prompt, verbose=self.verbose, memory=self.memory
)
def _get_entity_from_observation(self, observation: str) -> str:
# prompt = PromptTemplate.from_template(
# "What is the observed entity in the following observation? {observation}"
# + "\nEntity="
# )
# return self.chain(prompt).run(observation=observation).strip()
prompt = self.chain(f"What is the observed entity in the following observation? {observation}\n Entity=").strip()
return prompt
def _get_entity_action(self, observation: str, entity_name: str) -> str:
# prompt = PromptTemplate.from_template(
# "What is the {entity} doing in the following observation? {observation}"
# + "\nThe {entity} is"
# )
# return (
# self.chain(prompt).run(entity=entity_name, observation=observation).strip()
# )
return self.chain(f"What is the {entity_name} doing in the following observation {observation}\n The {entity_name} is?").strip()
# TODO: Replace with f strings and all PromptTemplate
def summarize_related_memories(self, observation: str) -> str:
"""Summarize memories that are most relevant to an observation."""
prompt = f"""
{q1}
Context from Memory:
{relevant_memories}
Relevant Context:
"""
prompt = PromptTemplate.from_template(
"""
{q1}?
Context from memory:
{relevant_memories}
Relevant context:
"""
)
entity_name = self._get_entity_from_observation(observation)
entity_action = self._get_entity_action(observation, entity_name)
q1 = f"What is the relationship between {self.name} and {entity_name}"
q2 = f"{entity_name} is {entity_action}"
return self.chain(prompt=prompt).run(q1=q1, queries=[q1, q2]).strip()
def _generate_reaction(
self, observation: str, suffix: str, now: Optional[datetime] = None
) -> str:
"""React to a given observation or dialogue act."""
prompt = PromptTemplate.from_template(
"{agent_summary_description}"
+ "\nIt is {current_time}."
+ "\n{agent_name}'s status: {agent_status}"
+ "\nSummary of relevant context from {agent_name}'s memory:"
+ "\n{relevant_memories}"
+ "\nMost recent observations: {most_recent_memories}"
+ "\nObservation: {observation}"
+ "\n\n"
+ suffix
)
agent_summary_description = self.get_summary(now=now)
relevant_memories_str = self.summarize_related_memories(observation)
current_time_str = (
datetime.now().strftime("%B %d, %Y, %I:%M %p")
if now is None
else now.strftime("%B %d, %Y, %I:%M %p")
)
kwargs: Dict[str, Any] = dict(
agent_summary_description=agent_summary_description,
current_time=current_time_str,
relevant_memories=relevant_memories_str,
agent_name=self.name,
observation=observation,
agent_status=self.status,
)
consumed_tokens = self.llm.get_num_tokens(
prompt.format(most_recent_memories="", **kwargs)
)
kwargs[self.memory.most_recent_memories_token_key] = consumed_tokens
return self.chain(prompt=prompt).run(**kwargs).strip()
def _clean_response(self, text: str) -> str:
return re.sub(f"^{self.name} ", "", text.strip()).strip()
def generate_reaction(
self, observation: str, now: Optional[datetime] = None
) -> Tuple[bool, str]:
"""React to a given observation."""
call_to_action_template = (
"Should {agent_name} react to the observation, and if so,"
+ " what would be an appropriate reaction? Respond in one line."
+ ' If the action is to engage in dialogue, write:\nSAY: "what to say"'
+ "\notherwise, write:\nREACT: {agent_name}'s reaction (if anything)."
+ "\nEither do nothing, react, or say something but not both.\n\n"
)
full_result = self._generate_reaction(
observation, call_to_action_template, now=now
)
result = full_result.strip().split("\n")[0]
# AAA
self.memory.save_context(
{},
{
self.memory.add_memory_key: f"{self.name} observed "
f"{observation} and reacted by {result}",
self.memory.now_key: now,
},
)
if "REACT:" in result:
reaction = self._clean_response(result.split("REACT:")[-1])
return False, f"{self.name} {reaction}"
if "SAY:" in result:
said_value = self._clean_response(result.split("SAY:")[-1])
return True, f"{self.name} said {said_value}"
else:
return False, result
def generate_dialogue_response(
self, observation: str, now: Optional[datetime] = None
) -> Tuple[bool, str]:
"""React to a given observation."""
call_to_action_template = (
"What would {agent_name} say? To end the conversation, write:"
' GOODBYE: "what to say". Otherwise to continue the conversation,'
' write: SAY: "what to say next"\n\n'
)
full_result = self._generate_reaction(
observation, call_to_action_template, now=now
)
result = full_result.strip().split("\n")[0]
if "GOODBYE:" in result:
farewell = self._clean_response(result.split("GOODBYE:")[-1])
self.memory.save_context(
{},
{
self.memory.add_memory_key: f"{self.name} observed "
f"{observation} and said {farewell}",
self.memory.now_key: now,
},
)
return False, f"{self.name} said {farewell}"
if "SAY:" in result:
response_text = self._clean_response(result.split("SAY:")[-1])
self.memory.save_context(
{},
{
self.memory.add_memory_key: f"{self.name} observed "
f"{observation} and said {response_text}",
self.memory.now_key: now,
},
)
return True, f"{self.name} said {response_text}"
else:
return False, result
######################################################
# Agent stateful' summary methods. #
# Each dialog or response prompt includes a header #
# summarizing the agent's self-description. This is #
# updated periodically through probing its memories #
######################################################
def _compute_agent_summary(self) -> str:
""""""
prompt = PromptTemplate.from_template(
"How would you summarize {name}'s core characteristics given the"
+ " following statements:\n"
+ "{relevant_memories}"
+ "Do not embellish."
+ "\n\nSummary: "
)
# The agent seeks to think about their core characteristics.
return (
self.chain(prompt)
.run(name=self.name, queries=[f"{self.name}'s core characteristics"])
.strip()
)
def get_summary(
self, force_refresh: bool = False, now: Optional[datetime] = None
) -> str:
"""Return a descriptive summary of the agent."""
current_time = datetime.now() if now is None else now
since_refresh = (current_time - self.last_refreshed).seconds
if (
not self.summary
or since_refresh >= self.summary_refresh_seconds
or force_refresh
):
self.summary = self._compute_agent_summary()
self.last_refreshed = current_time
age = self.age if self.age is not None else "N/A"
return (
f"Name: {self.name} (age: {age})"
+ f"\nInnate traits: {self.traits}"
+ f"\n{self.summary}"
)
def get_full_header(
self, force_refresh: bool = False, now: Optional[datetime] = None
) -> str:
"""Return a full header of the agent's status, summary, and current time."""
now = datetime.now() if now is None else now
summary = self.get_summary(force_refresh=force_refresh, now=now)
current_time_str = now.strftime("%B %d, %Y, %I:%M %p")
return (
f"{summary}\nIt is {current_time_str}.\n{self.name}'s status: {self.status}"
)

@ -3,7 +3,7 @@
# from .GroundingDINO.groundingdino.util import box_ops, SLConfig # from .GroundingDINO.groundingdino.util import box_ops, SLConfig
# from .GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap # from .GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
# from .segment_anything.segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator # from .segment_anything.segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator
from swarms.agents.workers.models.GroundingDINO.groundingdino.datasets.transforms import ( from swarms.workers.models.GroundingDINO.groundingdino.datasets.transforms import (
Compose, Compose,
Normalize, Normalize,
ToTensor, ToTensor,
@ -21,9 +21,9 @@ from swarms.agents.workers.models.GroundingDINO.groundingdino.datasets.transform
RandomSelect RandomSelect
) )
from swarms.agents.workers.models.GroundingDINO.groundingdino.models import build_model from swarms.workers.models.GroundingDINO.groundingdino.models import build_model
from swarms.agents.workers.models.GroundingDINO.groundingdino.util import box_ops from swarms.workers.models.GroundingDINO.groundingdino.util import box_ops
from swarms.agents.workers.models.GroundingDINO.groundingdino.util.slconfig import SLConfig from swarms.workers.models.GroundingDINO.groundingdino.util.slconfig import SLConfig
from swarms.agents.workers.models.GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap from swarms.workers.models.GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
from swarms.agents.workers.models.segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator from swarms.workers.models.segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save