[FEAT][DOCS]

pull/459/head^2
Kye 9 months ago
parent 68a91fb7bb
commit ea62d98887

@ -124,6 +124,7 @@ nav:
- Language:
- BaseLLM: "swarms/models/base_llm.md"
- Overview: "swarms/models/index.md"
- Llava3: "swarms/models/llama3.md"
- HuggingFaceLLM: "swarms/models/huggingface.md"
- Anthropic: "swarms/models/anthropic.md"
- OpenAI: "swarms/models/openai.md"

@ -0,0 +1,96 @@
## Llava3
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from swarms.models.base_llm import BaseLLM
class Llama3(BaseLLM):
"""
Llama3 class represents a Llama model for natural language generation.
Args:
model_id (str): The ID of the Llama model to use.
system_prompt (str): The system prompt to use for generating responses.
temperature (float): The temperature value for controlling the randomness of the generated responses.
top_p (float): The top-p value for controlling the diversity of the generated responses.
max_tokens (int): The maximum number of tokens to generate in the response.
**kwargs: Additional keyword arguments.
Attributes:
model_id (str): The ID of the Llama model being used.
system_prompt (str): The system prompt for generating responses.
temperature (float): The temperature value for generating responses.
top_p (float): The top-p value for generating responses.
max_tokens (int): The maximum number of tokens to generate in the response.
tokenizer (AutoTokenizer): The tokenizer for the Llama model.
model (AutoModelForCausalLM): The Llama model for generating responses.
Methods:
run(task, *args, **kwargs): Generates a response for the given task.
"""
def __init__(
self,
model_id="meta-llama/Meta-Llama-3-8B-Instruct",
system_prompt: str = None,
temperature: float = 0.6,
top_p: float = 0.9,
max_tokens: int = 4000,
**kwargs,
):
self.model_id = model_id
self.system_prompt = system_prompt
self.temperature = temperature
self.top_p = top_p
self.max_tokens = max_tokens
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
self.model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
def run(self, task: str, *args, **kwargs):
"""
Generates a response for the given task.
Args:
task (str): The user's task or input.
Returns:
str: The generated response.
"""
messages = [
{"role": "system", "content": self.system_prompt},
{"role": "user", "content": task},
]
input_ids = self.tokenizer.apply_chat_template(
messages, add_generation_prompt=True, return_tensors="pt"
).to(self.model.device)
terminators = [
self.tokenizer.eos_token_id,
self.tokenizer.convert_tokens_to_ids("<|eot_id|>"),
]
outputs = self.model.generate(
input_ids,
max_new_tokens=self.max_tokens,
eos_token_id=terminators,
do_sample=True,
temperature=self.temperature,
top_p=self.top_p,
*args,
**kwargs,
)
response = outputs[0][input_ids.shape[-1] :]
return self.tokenizer.decode(
response, skip_special_tokens=True
)
```

@ -114,9 +114,8 @@ rearrange(agents, flow, task)
Here's an example of how to use the `AgentRearrange` class and the `rearrange` function:
```python
from swarms import Agent
from swarms import Agent, AgentRearrange, rearrange
from typing import List
from agent_rearrange import AgentRearrange, rearrange
# Initialize the director agent
director = Agent(

Loading…
Cancel
Save