|
|
|
@ -1,4 +1,8 @@
|
|
|
|
|
from typing import List, Literal, Dict, Callable, Any
|
|
|
|
|
from typing import List, Literal, Dict, Callable, Any, Optional, Tuple, Hashable
|
|
|
|
|
|
|
|
|
|
from functools import lru_cache
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from swarms.agents.consistency_agent import SelfConsistencyAgent
|
|
|
|
|
from swarms.agents.flexion_agent import ReflexionAgent
|
|
|
|
@ -10,6 +14,7 @@ from swarms.agents.reasoning_duo import ReasoningDuo
|
|
|
|
|
from swarms.utils.output_types import OutputType
|
|
|
|
|
from swarms.agents.agent_judge import AgentJudge
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
agent_types = Literal[
|
|
|
|
|
"reasoning-duo",
|
|
|
|
|
"self-consistency",
|
|
|
|
@ -22,10 +27,12 @@ agent_types = Literal[
|
|
|
|
|
"AgentJudge",
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ReasoningAgentRouter:
|
|
|
|
|
"""
|
|
|
|
|
A Reasoning Agent that can answer questions and assist with various tasks using different reasoning strategies.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
|
agent_name (str): The name of the agent.
|
|
|
|
|
description (str): A brief description of the agent's capabilities.
|
|
|
|
@ -37,6 +44,11 @@ class ReasoningAgentRouter:
|
|
|
|
|
output_type (OutputType): The format of the output (e.g., dict, list).
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Class variable to store cached agent instances
|
|
|
|
|
_agent_cache: Dict[Tuple[Hashable, ...], Any] = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
|
self,
|
|
|
|
|
agent_name: str = "reasoning_agent",
|
|
|
|
@ -61,25 +73,25 @@ class ReasoningAgentRouter:
|
|
|
|
|
self.num_knowledge_items = num_knowledge_items
|
|
|
|
|
self.memory_capacity = memory_capacity
|
|
|
|
|
|
|
|
|
|
# Added: Initialize the factory mapping dictionary
|
|
|
|
|
# Initialize agent factory mapping dictionary
|
|
|
|
|
self._initialize_agent_factories()
|
|
|
|
|
|
|
|
|
|
# Added: Factory method initialization function
|
|
|
|
|
|
|
|
|
|
def _initialize_agent_factories(self) -> None:
|
|
|
|
|
"""
|
|
|
|
|
Initialize the agent factory mapping dictionary, mapping various agent types to their respective creation functions.
|
|
|
|
|
This method replaces the original if-elif chain, making the code easier to maintain and extend.
|
|
|
|
|
This method replaces the original if-elif chain, making the code more maintainable and extensible.
|
|
|
|
|
"""
|
|
|
|
|
self.agent_factories: Dict[str, Callable[[], Any]] = {
|
|
|
|
|
# ReasoningDuo factory methods
|
|
|
|
|
# ReasoningDuo factory method
|
|
|
|
|
"reasoning-duo": self._create_reasoning_duo,
|
|
|
|
|
"reasoning-agent": self._create_reasoning_duo,
|
|
|
|
|
|
|
|
|
|
# SelfConsistencyAgent factory methods
|
|
|
|
|
# SelfConsistencyAgent factory method
|
|
|
|
|
"self-consistency": self._create_consistency_agent,
|
|
|
|
|
"consistency-agent": self._create_consistency_agent,
|
|
|
|
|
|
|
|
|
|
# IREAgent factory methods
|
|
|
|
|
# IREAgent factory method
|
|
|
|
|
"ire": self._create_ire_agent,
|
|
|
|
|
"ire-agent": self._create_ire_agent,
|
|
|
|
|
|
|
|
|
@ -89,9 +101,32 @@ class ReasoningAgentRouter:
|
|
|
|
|
"GKPAgent": self._create_gkp_agent
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
# Added: Concrete factory methods for various agent types
|
|
|
|
|
|
|
|
|
|
def _get_cache_key(self) -> Tuple[Hashable, ...]:
|
|
|
|
|
"""
|
|
|
|
|
Generate a unique key for cache lookup.
|
|
|
|
|
The key is based on all relevant configuration parameters of the agent.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Tuple[Hashable, ...]: A hashable tuple to serve as the cache key
|
|
|
|
|
"""
|
|
|
|
|
return (
|
|
|
|
|
self.swarm_type,
|
|
|
|
|
self.agent_name,
|
|
|
|
|
self.description,
|
|
|
|
|
self.model_name,
|
|
|
|
|
self.system_prompt,
|
|
|
|
|
self.max_loops,
|
|
|
|
|
self.num_samples,
|
|
|
|
|
self.output_type,
|
|
|
|
|
self.num_knowledge_items,
|
|
|
|
|
self.memory_capacity
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _create_reasoning_duo(self):
|
|
|
|
|
"""Creates an agent instance for ReasoningDuo type"""
|
|
|
|
|
"""Create an agent instance for the ReasoningDuo type"""
|
|
|
|
|
return ReasoningDuo(
|
|
|
|
|
agent_name=self.agent_name,
|
|
|
|
|
agent_description=self.description,
|
|
|
|
@ -101,7 +136,7 @@ class ReasoningAgentRouter:
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def _create_consistency_agent(self):
|
|
|
|
|
"""Creates an agent instance for SelfConsistencyAgent type"""
|
|
|
|
|
"""Create an agent instance for the SelfConsistencyAgent type"""
|
|
|
|
|
return SelfConsistencyAgent(
|
|
|
|
|
agent_name=self.agent_name,
|
|
|
|
|
description=self.description,
|
|
|
|
@ -113,7 +148,7 @@ class ReasoningAgentRouter:
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def _create_ire_agent(self):
|
|
|
|
|
"""Creates an agent instance for IREAgent type"""
|
|
|
|
|
"""Create an agent instance for the IREAgent type"""
|
|
|
|
|
return IREAgent(
|
|
|
|
|
agent_name=self.agent_name,
|
|
|
|
|
description=self.description,
|
|
|
|
@ -125,7 +160,7 @@ class ReasoningAgentRouter:
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def _create_agent_judge(self):
|
|
|
|
|
"""Creates an agent instance for AgentJudge type"""
|
|
|
|
|
"""Create an agent instance for the AgentJudge type"""
|
|
|
|
|
return AgentJudge(
|
|
|
|
|
agent_name=self.agent_name,
|
|
|
|
|
model_name=self.model_name,
|
|
|
|
@ -134,7 +169,7 @@ class ReasoningAgentRouter:
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def _create_reflexion_agent(self):
|
|
|
|
|
"""Creates an agent instance for ReflexionAgent type"""
|
|
|
|
|
"""Create an agent instance for the ReflexionAgent type"""
|
|
|
|
|
return ReflexionAgent(
|
|
|
|
|
agent_name=self.agent_name,
|
|
|
|
|
system_prompt=self.system_prompt,
|
|
|
|
@ -143,118 +178,81 @@ class ReasoningAgentRouter:
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def _create_gkp_agent(self):
|
|
|
|
|
"""Creates an agent instance for GKPAgent type"""
|
|
|
|
|
"""Create an agent instance for the GKPAgent type"""
|
|
|
|
|
return GKPAgent(
|
|
|
|
|
agent_name=self.agent_name,
|
|
|
|
|
model_name=self.model_name,
|
|
|
|
|
num_knowledge_items=self.num_knowledge_items,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def select_swarm(self):
|
|
|
|
|
"""
|
|
|
|
|
Selects and initializes the appropriate reasoning swarm based on the specified swarm type.
|
|
|
|
|
Select and initialize the appropriate reasoning swarm based on the specified swarm type.
|
|
|
|
|
Uses a caching mechanism to return a cached instance if an agent with the same configuration already exists.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
An instance of the selected reasoning swarm.
|
|
|
|
|
"""
|
|
|
|
|
# Commented out original if-elif chain implementation
|
|
|
|
|
"""
|
|
|
|
|
if (
|
|
|
|
|
self.swarm_type == "reasoning-duo"
|
|
|
|
|
or self.swarm_type == "reasoning-agent"
|
|
|
|
|
):
|
|
|
|
|
return ReasoningDuo(
|
|
|
|
|
agent_name=self.agent_name,
|
|
|
|
|
agent_description=self.description,
|
|
|
|
|
model_name=[self.model_name, self.model_name],
|
|
|
|
|
system_prompt=self.system_prompt,
|
|
|
|
|
output_type=self.output_type,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
elif (
|
|
|
|
|
self.swarm_type == "self-consistency"
|
|
|
|
|
or self.swarm_type == "consistency-agent"
|
|
|
|
|
):
|
|
|
|
|
return SelfConsistencyAgent(
|
|
|
|
|
agent_name=self.agent_name,
|
|
|
|
|
description=self.description,
|
|
|
|
|
model_name=self.model_name,
|
|
|
|
|
system_prompt=self.system_prompt,
|
|
|
|
|
max_loops=self.max_loops,
|
|
|
|
|
num_samples=self.num_samples,
|
|
|
|
|
output_type=self.output_type,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
elif (
|
|
|
|
|
self.swarm_type == "ire" or self.swarm_type == "ire-agent"
|
|
|
|
|
):
|
|
|
|
|
return IREAgent(
|
|
|
|
|
agent_name=self.agent_name,
|
|
|
|
|
description=self.description,
|
|
|
|
|
model_name=self.model_name,
|
|
|
|
|
system_prompt=self.system_prompt,
|
|
|
|
|
max_loops=self.max_loops,
|
|
|
|
|
max_iterations=self.num_samples,
|
|
|
|
|
output_type=self.output_type,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
elif self.swarm_type == "AgentJudge":
|
|
|
|
|
return AgentJudge(
|
|
|
|
|
agent_name=self.agent_name,
|
|
|
|
|
model_name=self.model_name,
|
|
|
|
|
system_prompt=self.system_prompt,
|
|
|
|
|
max_loops=self.max_loops,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
elif self.swarm_type == "ReflexionAgent":
|
|
|
|
|
return ReflexionAgent(
|
|
|
|
|
agent_name=self.agent_name,
|
|
|
|
|
system_prompt=self.system_prompt,
|
|
|
|
|
model_name=self.model_name,
|
|
|
|
|
max_loops=self.max_loops,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
elif self.swarm_type == "GKPAgent":
|
|
|
|
|
return GKPAgent(
|
|
|
|
|
agent_name=self.agent_name,
|
|
|
|
|
model_name=self.model_name,
|
|
|
|
|
num_knowledge_items=self.num_knowledge_items,
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
raise ValueError(f"Invalid swarm type: {self.swarm_type}")
|
|
|
|
|
The selected reasoning swarm instance.
|
|
|
|
|
"""
|
|
|
|
|
# Generate cache key
|
|
|
|
|
cache_key = self._get_cache_key()
|
|
|
|
|
|
|
|
|
|
# Added: Implementation using factory pattern and dictionary mapping
|
|
|
|
|
# Check if an instance with the same configuration already exists in the cache
|
|
|
|
|
if cache_key in self.__class__._agent_cache:
|
|
|
|
|
return self.__class__._agent_cache[cache_key]
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
# Get the corresponding creation function from the factory dictionary and call it
|
|
|
|
|
return self.agent_factories[self.swarm_type]()
|
|
|
|
|
# Use the factory method to create a new instance
|
|
|
|
|
agent = self.agent_factories[self.swarm_type]()
|
|
|
|
|
|
|
|
|
|
# Add the newly created instance to the cache
|
|
|
|
|
self.__class__._agent_cache[cache_key] = agent
|
|
|
|
|
|
|
|
|
|
return agent
|
|
|
|
|
except KeyError:
|
|
|
|
|
# Maintain the same error handling as the original code
|
|
|
|
|
# Keep the same error handling as the original code
|
|
|
|
|
raise ValueError(f"Invalid swarm type: {self.swarm_type}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def run(self, task: str, *args, **kwargs):
|
|
|
|
|
"""
|
|
|
|
|
Executes the selected swarm's reasoning process on the given task.
|
|
|
|
|
Execute the reasoning process of the selected swarm on a given task.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
task (str): The task or question to be processed by the reasoning agent.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
The result of the reasoning process.
|
|
|
|
|
"""
|
|
|
|
|
swarm = self.select_swarm()
|
|
|
|
|
return swarm.run(task=task)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def batched_run(self, tasks: List[str], *args, **kwargs):
|
|
|
|
|
"""
|
|
|
|
|
Executes the reasoning process on a batch of tasks.
|
|
|
|
|
Execute the reasoning process on a batch of tasks.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
tasks (List[str]): A list of tasks to be processed.
|
|
|
|
|
tasks (List[str]): The list of tasks to process.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
List of results from the reasoning process for each task.
|
|
|
|
|
A list of reasoning process results for each task.
|
|
|
|
|
"""
|
|
|
|
|
results = []
|
|
|
|
|
for task in tasks:
|
|
|
|
|
results.append(self.run(task, *args, **kwargs))
|
|
|
|
|
return results
|
|
|
|
|
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
|
def clear_cache(cls):
|
|
|
|
|
"""
|
|
|
|
|
Clear the agent instance cache.
|
|
|
|
|
Use this when you need to free memory or force the creation of new instances.
|
|
|
|
|
"""
|
|
|
|
|
cls._agent_cache.clear()
|