[CODE QUALITY]

pull/233/head
Kye 1 year ago
parent 4e47528b35
commit ec511492cb

@ -9,7 +9,7 @@ from swarms.prompts.logistics import (
Safety_Agent_Prompt, Safety_Agent_Prompt,
Security_Agent_Prompt, Security_Agent_Prompt,
Sustainability_Agent_Prompt, Sustainability_Agent_Prompt,
Efficiency_Agent_Prompt Efficiency_Agent_Prompt,
) )
load_dotenv() load_dotenv()
@ -22,13 +22,22 @@ factory_image = "factory_image1.jpg"
# Initialize agents with respective prompts # Initialize agents with respective prompts
health_security_agent = Agent( health_security_agent = Agent(
llm=llm, sop=Health_Security_Agent_Prompt, max_loops=3, multi_modal=True llm=llm,
sop=Health_Security_Agent_Prompt,
max_loops=3,
multi_modal=True,
) )
quality_control_agent = Agent( quality_control_agent = Agent(
llm=llm, sop=Quality_Control_Agent_Prompt, max_loops=3, multi_modal=True llm=llm,
sop=Quality_Control_Agent_Prompt,
max_loops=3,
multi_modal=True,
) )
productivity_agent = Agent( productivity_agent = Agent(
llm=llm, sop=Productivity_Agent_Prompt, max_loops=3, multi_modal=True llm=llm,
sop=Productivity_Agent_Prompt,
max_loops=3,
multi_modal=True,
) )
safety_agent = Agent( safety_agent = Agent(
llm=llm, sop=Safety_Agent_Prompt, max_loops=3, multi_modal=True llm=llm, sop=Safety_Agent_Prompt, max_loops=3, multi_modal=True
@ -37,10 +46,16 @@ security_agent = Agent(
llm=llm, sop=Security_Agent_Prompt, max_loops=3, multi_modal=True llm=llm, sop=Security_Agent_Prompt, max_loops=3, multi_modal=True
) )
sustainability_agent = Agent( sustainability_agent = Agent(
llm=llm, sop=Sustainability_Agent_Prompt, max_loops=3, multi_modal=True llm=llm,
sop=Sustainability_Agent_Prompt,
max_loops=3,
multi_modal=True,
) )
efficiency_agent = Agent( efficiency_agent = Agent(
llm=llm, sop=Efficiency_Agent_Prompt, max_loops=3, multi_modal=True llm=llm,
sop=Efficiency_Agent_Prompt,
max_loops=3,
multi_modal=True,
) )
# Run agents with respective tasks on the same image # Run agents with respective tasks on the same image
@ -54,14 +69,17 @@ productivity_analysis = productivity_agent.run(
"Evaluate factory productivity", factory_image "Evaluate factory productivity", factory_image
) )
safety_analysis = safety_agent.run( safety_analysis = safety_agent.run(
"Inspect the factory's adherence to safety standards", factory_image "Inspect the factory's adherence to safety standards",
factory_image,
) )
security_analysis = security_agent.run( security_analysis = security_agent.run(
"Assess the factory's security measures and systems", factory_image "Assess the factory's security measures and systems",
factory_image,
) )
sustainability_analysis = sustainability_agent.run( sustainability_analysis = sustainability_agent.run(
"Examine the factory's sustainability practices", factory_image "Examine the factory's sustainability practices", factory_image
) )
efficiency_analysis = efficiency_agent.run( efficiency_analysis = efficiency_agent.run(
"Analyze the efficiency of the factory's manufacturing process", factory_image "Analyze the efficiency of the factory's manufacturing process",
factory_image,
) )

@ -0,0 +1,54 @@
"""
tool decorated func [search_api] -> agent which parses the docs of the tool func
-> injected into prompt -> agent will output json containing tool usage -> agent output will be parsed -> tool executed
-> terminal response can be returned to agent for self-healing
"""
import os
from dotenv import load_dotenv
# Import the OpenAIChat model and the Agent struct
from swarms.models import OpenAIChat
from swarms.structs import Agent
from swarms.tools.tool import tool
# Load the environment variables
load_dotenv()
# Define a tool
@tool
def search_api(query: str):
"""Search the web for the query
Args:
query (str): _description_
Returns:
_type_: _description_
"""
return f"Search results for {query}"
# Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY")
# Initialize the language model
llm = OpenAIChat(
temperature=0.5,
openai_api_key=api_key,
)
## Initialize the workflow
agent = Agent(
llm=llm, max_loops=1, dashboard=True, tools=[search_api]
)
# Run the workflow on a task
out = agent.run("Generate a 10,000 word blog on health and wellness.")
print(out)

@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry] [tool.poetry]
name = "swarms" name = "swarms"
version = "2.4.6" version = "2.4.7"
description = "Swarms - Pytorch" description = "Swarms - Pytorch"
license = "MIT" license = "MIT"
authors = ["Kye Gomez <kye@apac.ai>"] authors = ["Kye Gomez <kye@apac.ai>"]

@ -1,4 +1,4 @@
import os import os
from swarms.models import OpenAIChat from swarms.models import OpenAIChat
from swarms.structs import Agent from swarms.structs import Agent
from swarms.structs.sequential_workflow import SequentialWorkflow from swarms.structs.sequential_workflow import SequentialWorkflow
@ -24,20 +24,19 @@ agent1 = Agent(llm=llm, max_loops=1)
# Create another agent for a different task # Create another agent for a different task
agent2 = Agent(llm=llm, max_loops=1) agent2 = Agent(llm=llm, max_loops=1)
# Create another agent for a different task
agent3 = Agent(llm=llm, max_loops=1)
# Create the workflow # Create the workflow
workflow = SequentialWorkflow(max_loops=1) workflow = SequentialWorkflow(max_loops=1)
# Add tasks to the workflow # Add tasks to the workflow
workflow.add( workflow.add(
agent1, "Generate a 10,000 word blog on health and wellness.", agent1,
"Generate a 10,000 word blog on health and wellness.",
) )
# Suppose the next task takes the output of the first task as input # Suppose the next task takes the output of the first task as input
workflow.add( workflow.add(
agent2, "Summarize the generated blog", agent2,
"Summarize the generated blog",
) )
# Run the workflow # Run the workflow

@ -1,4 +1,3 @@
Health_Security_Agent_Prompt = """Conduct a thorough analysis of the factory's working conditions focusing on health and safety standards. Examine the cleanliness Health_Security_Agent_Prompt = """Conduct a thorough analysis of the factory's working conditions focusing on health and safety standards. Examine the cleanliness
of the workspace, the adequacy of ventilation systems, the appropriate spacing between workstations, and the availability and use of personal of the workspace, the adequacy of ventilation systems, the appropriate spacing between workstations, and the availability and use of personal
protective equipment by workers. Evaluate the compliance of these aspects with health and safety regulations. Assess the overall environmental protective equipment by workers. Evaluate the compliance of these aspects with health and safety regulations. Assess the overall environmental

@ -90,4 +90,4 @@ def sop_generator_agent_prompt(task_name: str):
This refactored SOP focuses on guidelines specifically for the instructor agent on techniques to teach the process of writing standard operating procedures to execute tasks. Let me know if you need any other updates. This refactored SOP focuses on guidelines specifically for the instructor agent on techniques to teach the process of writing standard operating procedures to execute tasks. Let me know if you need any other updates.
""" """
return str(SOP_GENERATOR_SOP) return str(SOP_GENERATOR_SOP)

@ -142,6 +142,7 @@ class SequentialWorkflow:
Args: Args:
agent (Union[Callable, Agent]): The model or agent to execute the task. agent (Union[Callable, Agent]): The model or agent to execute the task.
task (str): The task description or the initial input for the Agent. task (str): The task description or the initial input for the Agent.
*args: Additional arguments to pass to the task execution. *args: Additional arguments to pass to the task execution.
**kwargs: Additional keyword arguments to pass to the task execution. **kwargs: Additional keyword arguments to pass to the task execution.
""" """

@ -1,8 +1,10 @@
from dataclass import dataclass, field
from swarms.structs.agent import Agent from swarms.structs.agent import Agent
from typing import Optional
from typing import List, Dict, Any, Sequence from typing import List, Dict, Any, Sequence
@dataclass
class Task: class Task:
""" """
Task is a unit of work that can be executed by a set of agents. Task is a unit of work that can be executed by a set of agents.
@ -12,38 +14,119 @@ class Task:
that must be executed before this task can be executed. that must be executed before this task can be executed.
Args: Args:
id (str): A unique identifier for the task id (str): The name of the task.
task (str): The name of the task description (Optional[str]): A description of the task.
agents (Sequence[Agent]): A list of agents that can execute the task task (str): The name of the task.
result (Any): The result of the task.
agents (Sequence[Agent]): A list of agents that can execute the task.
dependencies (List[str], optional): A list of task names that must be executed before this task can be executed. Defaults to []. dependencies (List[str], optional): A list of task names that must be executed before this task can be executed. Defaults to [].
args (List[Any], optional): A list of arguments to pass to the agents. Defaults to field(default_factory=list).
kwargs (List[Any], optional): A list of keyword arguments to pass to the agents. Defaults to field(default_factory=list).
Methods: Methods:
execute(parent_results: Dict[str, Any]): Executes the task by passing the results of the parent tasks to the agents. execute: Executes the task by passing the results of the parent tasks to the agents.
Examples:
import os
from swarms.models import OpenAIChat
from swarms.structs import Agent
from swarms.structs.sequential_workflow import SequentialWorkflow
from dotenv import load_dotenv
load_dotenv()
# Load the environment variables
api_key = os.getenv("OPENAI_API_KEY")
# Initialize the language agent
llm = OpenAIChat(
openai_api_key=api_key,
temperature=0.5,
max_tokens=3000,
)
# Initialize the agent with the language agent
agent1 = Agent(llm=llm, max_loops=1)
# Create another agent for a different task
agent2 = Agent(llm=llm, max_loops=1)
# Create the workflow
workflow = SequentialWorkflow(max_loops=1)
# Add tasks to the workflow
workflow.add(
agent1, "Generate a 10,000 word blog on health and wellness.",
)
# Suppose the next task takes the output of the first task as input
workflow.add(
agent2, "Summarize the generated blog",
)
# Run the workflow
workflow.run()
# Output the results
for task in workflow.tasks:
print(f"Task: {task.description}, Result: {task.result}")
""" """
def __init__( def __init__(
self, self,
id: str, id: str,
description: Optional[str],
task: str, task: str,
result: Any,
agents: Sequence[Agent], agents: Sequence[Agent],
dependencies: List[str] = [], dependencies: List[str] = [],
args: List[Any] = field(default_factory=list),
kwargs: List[Any] = field(default_factory=list),
): ):
self.id = id self.id = id
self.description = description
self.task = task self.task = task
self.result = result
self.agents = agents self.agents = agents
self.dependencies = dependencies self.dependencies = dependencies
self.results = [] self.results = []
self.args = args
self.kwargs = kwargs
def execute(self, parent_results: Dict[str, Any]): def execute(self, parent_results: Dict[str, Any]):
"""Executes the task by passing the results of the parent tasks to the agents. """Executes the task by passing the results of the parent tasks to the agents.
Args: Args:
parent_results (Dict[str, Any]): _description_ parent_results (Dict[str, Any]): A dictionary of task names and their results.
Examples:
""" """
args = [parent_results[dep] for dep in self.dependencies] args = [parent_results[dep] for dep in self.dependencies]
for agent in self.agents: for agent in self.agents:
result = agent.run(self.task, *args) if isinstance(agent, Agent):
if "prompt" in self.kwargs:
self.kwargs["prompt"] += (
f"\n\nPrevious output: {self.results[-1]}"
if self.results
else ""
)
else:
self.kwargs["prompt"] = (
f"Main task: {self.description}"
+ (
f"\n\nPrevious output: {self.results[-1]}"
if self.results
else ""
)
)
result = agent.run(
self.description, *args, **self.kwargs
)
else:
result = agent(self.description, *args, **self.kwargs)
self.results.append(result) self.results.append(result)
args = [ args = [result]
result self.history.append(result)
] # The output of one agent becomes the input to the next

Loading…
Cancel
Save