clean up for swarms

NewTools
Kye 2 years ago
parent d41e92929a
commit ee9a952ed1

@ -7,6 +7,13 @@ from swarms.tools.main import RequestsGet
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
class Swarms:
def __init__(self, openai_api_key):
self.openai_api_key = openai_api_key
@ -27,17 +34,12 @@ class Swarms:
process_csv,
WebpageQATool(qa_chain=load_qa_with_sources_chain(llm)),
# RequestsGet()
Tool(name="RequestsGet", func=RequestsGet.get, description="A portal to the internet, Use this when you need to get specific content from a website. Input should be a url (i.e. https://www.google.com). The output will be the text response of the GET request."),
# CodeEditor,
# Terminal,
# RequestsGet,
# ExitConversation
#code editor + terminal editor + visual agent
# Give the worker node itself as a tool
]
assert tools is not None, "tools is not initialized"
@ -77,7 +79,7 @@ class Swarms:
return BossNode(llm, vectorstore, agent_executor, max_iterations=5)
def run_swarms(self, objective, run_as=None):
def run_swarms(self, objective):
try:
# Run the swarm with the given objective
worker_tools = self.initialize_tools(OpenAI)
@ -86,13 +88,10 @@ class Swarms:
vectorstore = self.initialize_vectorstore()
worker_node = self.initialize_worker_node(worker_tools, vectorstore)
if run_as.lower() == 'worker':
tool_input = {'prompt': objective}
return worker_node.run(tool_input)
else:
boss_node = self.initialize_boss_node(vectorstore, worker_node)
task = boss_node.create_task(objective)
return boss_node.execute_task(task)
boss_node = self.initialize_boss_node(vectorstore, worker_node)
task = boss_node.create_task(objective)
return boss_node.execute_task(task)
except Exception as e:
logging.error(f"An error occurred in run_swarms: {e}")
raise
@ -116,6 +115,125 @@ class Swarms:
# class Swarms:
# def __init__(self, openai_api_key):
# self.openai_api_key = openai_api_key
# def initialize_llm(self, llm_class, temperature=0.5):
# # Initialize language model
# return llm_class(openai_api_key=self.openai_api_key, temperature=temperature)
# def initialize_tools(self, llm_class):
# llm = self.initialize_llm(llm_class)
# # Initialize tools
# web_search = DuckDuckGoSearchRun()
# tools = [
# web_search,
# WriteFileTool(root_dir=ROOT_DIR),
# ReadFileTool(root_dir=ROOT_DIR),
# process_csv,
# WebpageQATool(qa_chain=load_qa_with_sources_chain(llm)),
# # RequestsGet()
# Tool(name="RequestsGet", func=RequestsGet.get, description="A portal to the internet, Use this when you need to get specific content from a website. Input should be a url (i.e. https://www.google.com). The output will be the text response of the GET request."),
# # CodeEditor,
# # Terminal,
# # RequestsGet,
# # ExitConversation
# #code editor + terminal editor + visual agent
# # Give the worker node itself as a tool
# ]
# assert tools is not None, "tools is not initialized"
# return tools
# def initialize_vectorstore(self):
# # Initialize vector store
# embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key)
# embedding_size = 1536
# index = faiss.IndexFlatL2(embedding_size)
# return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})
# def initialize_worker_node(self, worker_tools, vectorstore):
# # Initialize worker node
# llm = self.initialize_llm(ChatOpenAI)
# worker_node = WorkerNode(llm=llm, tools=worker_tools, vectorstore=vectorstore)
# worker_node.create_agent(ai_name="Swarm Worker AI Assistant", ai_role="Assistant", human_in_the_loop=False, search_kwargs={})
# worker_node_tool = Tool(name="WorkerNode AI Agent", func=worker_node.run, description="Input: an objective with a todo list for that objective. Output: your task completed: Please be very clear what the objective and task instructions are. The Swarm worker agent is Useful for when you need to spawn an autonomous agent instance as a worker to accomplish any complex tasks, it can search the internet or write code or spawn child multi-modality models to process and generate images and text or audio and so on")
# return worker_node_tool
# def initialize_boss_node(self, vectorstore, worker_node):
# # Initialize boss node
# llm = self.initialize_llm(OpenAI)
# todo_prompt = PromptTemplate.from_template("You are a boss planer in a swarm who is an expert at coming up with a todo list for a given objective and then creating an worker to help you accomplish your task. Come up with a todo list for this objective: {objective} and then spawn a worker agent to complete the task for you. Always spawn an worker agent after creating a plan and pass the objective and plan to the worker agent.")
# todo_chain = LLMChain(llm=llm, prompt=todo_prompt)
# tools = [
# Tool(name="TODO", func=todo_chain.run, description="useful for when you need to come up with todo lists. Input: an objective to create a todo list for. Output: a todo list for that objective. Please be very clear what the objective is!"),
# worker_node
# ]
# suffix = """Question: {task}\n{agent_scratchpad}"""
# prefix = """You are an Boss in a swarm who performs one task based on the following objective: {objective}. Take into account these previously completed tasks: {context}.\n """
# prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix, suffix=suffix, input_variables=["objective", "task", "context", "agent_scratchpad"],)
# llm_chain = LLMChain(llm=llm, prompt=prompt)
# agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=[tool.name for tool in tools])
# agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)
# # return BossNode(return BossNode(llm, vectorstore, agent_executor, max_iterations=5)
# return BossNode(llm, vectorstore, agent_executor, max_iterations=5)
# def run_swarms(self, objective, run_as=None):
# try:
# # Run the swarm with the given objective
# worker_tools = self.initialize_tools(OpenAI)
# assert worker_tools is not None, "worker_tools is not initialized"
# vectorstore = self.initialize_vectorstore()
# worker_node = self.initialize_worker_node(worker_tools, vectorstore)
# if run_as.lower() == 'worker':
# tool_input = {'prompt': objective}
# return worker_node.run(tool_input)
# else:
# boss_node = self.initialize_boss_node(vectorstore, worker_node)
# task = boss_node.create_task(objective)
# return boss_node.execute_task(task)
# except Exception as e:
# logging.error(f"An error occurred in run_swarms: {e}")
# raise

Loading…
Cancel
Save