parent
12109e3857
commit
f1600d2e43
@ -0,0 +1,63 @@
|
||||
# Lumo Example
|
||||
Introducing Lumo-70B-Instruct - the largest and most advanced AI model ever created for the Solana ecosystem. Built on Meta's groundbreaking LLaMa 3.3 70B Instruct foundation, this revolutionary model represents a quantum leap in blockchain-specific artificial intelligence. With an unprecedented 70 billion parameters and trained on the most comprehensive Solana documentation dataset ever assembled, Lumo-70B-Instruct sets a new standard for developer assistance in the blockchain space.
|
||||
|
||||
|
||||
- [Docs](https://huggingface.co/lumolabs-ai/Lumo-70B-Instruct)
|
||||
|
||||
```python
|
||||
from swarms import Agent
|
||||
from transformers import LlamaForCausalLM, AutoTokenizer
|
||||
import torch
|
||||
from transformers import BitsAndBytesConfig
|
||||
|
||||
class Lumo:
|
||||
"""
|
||||
A class for generating text using the Lumo model with 4-bit quantization.
|
||||
"""
|
||||
def __init__(self):
|
||||
"""
|
||||
Initializes the Lumo model with 4-bit quantization and a tokenizer.
|
||||
"""
|
||||
# Configure 4-bit quantization
|
||||
bnb_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_quant_type="nf4",
|
||||
bnb_4bit_compute_dtype=torch.float16,
|
||||
llm_int8_enable_fp32_cpu_offload=True
|
||||
)
|
||||
|
||||
self.model = LlamaForCausalLM.from_pretrained(
|
||||
"lumolabs-ai/Lumo-70B-Instruct",
|
||||
device_map="auto",
|
||||
quantization_config=bnb_config,
|
||||
use_cache=False,
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
self.tokenizer = AutoTokenizer.from_pretrained("lumolabs-ai/Lumo-70B-Instruct")
|
||||
|
||||
def run(self, task: str) -> str:
|
||||
"""
|
||||
Generates text based on the given prompt using the Lumo model.
|
||||
|
||||
Args:
|
||||
prompt (str): The input prompt for the model.
|
||||
|
||||
Returns:
|
||||
str: The generated text.
|
||||
"""
|
||||
inputs = self.tokenizer(task, return_tensors="pt").to(self.model.device)
|
||||
outputs = self.model.generate(**inputs, max_new_tokens=100)
|
||||
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||
|
||||
|
||||
|
||||
|
||||
Agent(
|
||||
agent_name="Solana-Analysis-Agent",
|
||||
model_name=Lumo(),
|
||||
max_loops="auto",
|
||||
interactive=True,
|
||||
streaming_on=True,
|
||||
).run("How do i create a smart contract in solana?")
|
||||
|
||||
```
|
@ -0,0 +1,59 @@
|
||||
import torch
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
BitsAndBytesConfig,
|
||||
LlamaForCausalLM,
|
||||
)
|
||||
|
||||
from swarms import Agent
|
||||
|
||||
|
||||
class Lumo:
|
||||
"""
|
||||
A class for generating text using the Lumo model with 4-bit quantization.
|
||||
"""
|
||||
def __init__(self):
|
||||
"""
|
||||
Initializes the Lumo model with 4-bit quantization and a tokenizer.
|
||||
"""
|
||||
# Configure 4-bit quantization
|
||||
bnb_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_quant_type="nf4",
|
||||
bnb_4bit_compute_dtype=torch.float16,
|
||||
llm_int8_enable_fp32_cpu_offload=True
|
||||
)
|
||||
|
||||
self.model = LlamaForCausalLM.from_pretrained(
|
||||
"lumolabs-ai/Lumo-70B-Instruct",
|
||||
device_map="auto",
|
||||
quantization_config=bnb_config,
|
||||
use_cache=False,
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
self.tokenizer = AutoTokenizer.from_pretrained("lumolabs-ai/Lumo-70B-Instruct")
|
||||
|
||||
def run(self, task: str) -> str:
|
||||
"""
|
||||
Generates text based on the given prompt using the Lumo model.
|
||||
|
||||
Args:
|
||||
prompt (str): The input prompt for the model.
|
||||
|
||||
Returns:
|
||||
str: The generated text.
|
||||
"""
|
||||
inputs = self.tokenizer(task, return_tensors="pt").to(self.model.device)
|
||||
outputs = self.model.generate(**inputs, max_new_tokens=100)
|
||||
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
||||
|
||||
|
||||
|
||||
|
||||
Agent(
|
||||
agent_name="Solana-Analysis-Agent",
|
||||
model_name=Lumo(),
|
||||
max_loops="auto",
|
||||
interactive=True,
|
||||
streaming_on=True,
|
||||
).run("How do i create a smart contract in solana?")
|
@ -0,0 +1,6 @@
|
||||
from litellm import encode
|
||||
|
||||
|
||||
def count_tokens(text: str, model: str = "gpt-4o") -> int:
|
||||
"""Count the number of tokens in the given text."""
|
||||
return len(encode(model=model, text=text))
|
Loading…
Reference in new issue