CLEAN UP: display markdown, nonlinear workflow, playground, static utils

pull/170/head
Kye 1 year ago
parent 0036dcf864
commit f1b26e4690

@ -1,19 +0,0 @@
from swarms.structs import Flow, SequentialWorkflow
from swarms.models import OpenAIChat, Anthropic
# llm
llm = OpenAIChat()
llm2 = Anthropic()
# 2 Flows, one that creates an algorithmic pseuedocode and another that creates the pytorch code
flow1 = Flow(llm2, max_loops=1)
flow2 = Flow(llm, max_loops=1)
# SequentialWorkflow
workflow = SequentialWorkflow(
[flow1, flow2],
max_loops=1,
name="Paper to Code",
autosave=True,
description="This workflow takes a paper and converts it to code.",
)

@ -1,26 +0,0 @@
"""
Swarm Flow
Topic selection agent -> draft agent -> review agent -> distribution agent
Topic Selection Agent:
- Generate 10 topics on gaining mental clarity using Taosim and Christian meditation
Draft Agent:
- Write a 100% unique, creative and in human-like style article of a minimum of 5,000 words using headings and sub-headings.
Review Agent:
- Refine the article to meet PositiveMeds stringent publication standards.
Distribution Agent:
- Social Media posts for the article.
# TODO
- Add shorter and better topic generator prompt
- Optimize writer prompt to create longer and more enjoyeable blogs
- Use Local Models like Storywriter
"""
from swarms.models import OpenAIChat
from termcolor import colored

@ -1,105 +0,0 @@
from concurrent.futures import ThreadPoolExecutor, as_completed
from graphlib import TopologicalSorter
from typing import Dict, List
class Task:
"""
Task is a unit of work that can be executed by an agent
"""
def __init__(
self, id: str, parents: List["Task"] = None, children: List["Task"] = None
):
self.id = id
self.parents = parents
self.children = children
def can_execute(self):
"""
can_execute returns True if the task can be executed
"""
raise NotImplementedError
def execute(self):
"""
Execute the task
"""
raise NotImplementedError
class NonLinearWorkflow:
"""
NonLinearWorkflow constructs a non sequential DAG of tasks to be executed by agents
Architecture:
NonLinearWorkflow = Task + Agent + Executor
ASCII Diagram:
+-------------------+
| NonLinearWorkflow |
+-------------------+
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
+-------------------+
"""
def __init__(self, agents, iters_per_task):
"""A workflow is a collection of tasks that can be executed in parallel or sequentially."""
super().__init__()
self.executor = ThreadPoolExecutor()
self.agents = agents
self.tasks = []
def add(self, task: Task):
"""Add a task to the workflow"""
assert isinstance(task, Task), "Input must be an nstance of Task"
self.tasks.append(task)
return task
def run(self):
"""Run the workflow"""
ordered_tasks = self.ordered_tasks
exit_loop = False
while not self.is_finished() and not exit_loop:
futures_list = {}
for task in ordered_tasks:
if task.can_execute:
future = self.executor.submit(self.agents.run, task.task_string)
futures_list[future] = task
for future in as_completed(futures_list):
if isinstance(future.result(), Exception):
exit_loop = True
break
return self.output_tasks()
def output_tasks(self) -> List[Task]:
"""Output tasks from the workflow"""
return [task for task in self.tasks if not task.children]
def to_graph(self) -> Dict[str, set[str]]:
"""Convert the workflow to a graph"""
graph = {
task.id: set(child.id for child in task.children) for task in self.tasks
}
return graph
def order_tasks(self) -> List[Task]:
"""Order the tasks USING TOPOLOGICAL SORTING"""
task_order = TopologicalSorter(self.to_graph()).static_order()
return [self.find_task(task_id) for task_id in task_order]

@ -1,23 +0,0 @@
from rich import print as rich_print
from rich.markdown import Markdown
from rich.rule import Rule
def display_markdown_message(message):
"""
Display markdown message. Works with multiline strings with lots of indentation.
Will automatically make single line > tags beautiful.
"""
for line in message.split("\n"):
line = line.strip()
if line == "":
print("")
elif line == "---":
rich_print(Rule(style="white"))
else:
rich_print(Markdown(line))
if "\n" not in message and message.startswith(">"):
# Aesthetic choice. For these tags, they need a space below them
print("")

@ -1,17 +1,16 @@
import pandas as pd
from swarms.prompts.prebuild.multi_modal_prompts import DATAFRAME_PROMPT
import requests
from typing import Dict
from enum import Enum
from pathlib import Path
import shutil
import boto3
from abc import ABC, abstractmethod, abstractstaticmethod
import os import os
import random import random
import shutil
import uuid import uuid
from abc import ABC, abstractmethod, abstractstaticmethod
from enum import Enum
from pathlib import Path
from typing import Dict
import boto3
import numpy as np import numpy as np
import pandas as pd
import requests
def seed_everything(seed): def seed_everything(seed):
@ -389,20 +388,3 @@ class FileHandler:
# => base end # => base end
# ===========================> # ===========================>
class CsvToDataframe(BaseHandler):
def handle(self, filename: str):
df = pd.read_csv(filename)
description = (
f"Dataframe with {len(df)} rows and {len(df.columns)} columns. "
"Columns are: "
f"{', '.join(df.columns)}"
)
print(
f"\nProcessed CsvToDataframe, Input CSV: {filename}, Output Description:"
f" {description}"
)
return DATAFRAME_PROMPT.format(filename=filename, description=description)

@ -3,7 +3,7 @@ from rich.markdown import Markdown
from rich.rule import Rule from rich.rule import Rule
def display_markdown_message(message): def display_markdown_message(message: str):
""" """
Display markdown message. Works with multiline strings with lots of indentation. Display markdown message. Works with multiline strings with lots of indentation.
Will automatically make single line > tags beautiful. Will automatically make single line > tags beautiful.

@ -1,29 +0,0 @@
import os
import shutil
from pathlib import Path
# from env import DotEnv
from swarms.utils.main import AbstractUploader
class StaticUploader(AbstractUploader):
def __init__(self, server: str, path: Path, endpoint: str):
self.server = server
self.path = path
self.endpoint = endpoint
@staticmethod
def from_settings(path: Path, endpoint: str) -> "StaticUploader":
return StaticUploader(os.environ["SERVER"], path, endpoint)
def get_url(self, uploaded_path: str) -> str:
return f"{self.server}/{uploaded_path}"
def upload(self, filepath: str):
relative_path = Path("generated") / filepath.split("/")[-1]
file_path = self.path / relative_path
os.makedirs(os.path.dirname(file_path), exist_ok=True)
shutil.copy(filepath, file_path)
endpoint_path = self.endpoint / relative_path
return f"{self.server}/{endpoint_path}"

@ -1,6 +1,6 @@
import pytest import pytest
from unittest.mock import Mock from unittest.mock import Mock
from swarms.memory.oceandb import OceanDB from swarms.memory.ocean import OceanDB
@pytest.fixture @pytest.fixture

@ -1,6 +1,6 @@
import pytest import pytest
from unittest.mock import Mock, patch from unittest.mock import Mock, patch
from swarms.memory.oceandb import OceanDB from swarms.memory.ocean import OceanDB
def test_init(): def test_init():

Loading…
Cancel
Save