|
|
@ -1,13 +1,19 @@
|
|
|
|
|
|
|
|
from typing import List
|
|
|
|
|
|
|
|
from qdrant_client.http.models import CollectionInfoResponse, OperationResponse, SearchResult
|
|
|
|
|
|
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
from httpx import RequestError
|
|
|
|
from httpx import RequestError
|
|
|
|
from qdrant_client import QdrantClient
|
|
|
|
from qdrant_client import QdrantClient
|
|
|
|
from qdrant_client.http.models import Distance, VectorParams, PointStruct
|
|
|
|
from qdrant_client.http.models import Distance, VectorParams, PointStruct
|
|
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
|
|
class Qdrant:
|
|
|
|
class Qdrant:
|
|
|
|
def __init__(self,api_key, host, port=6333, collection_name="qdrant", model_name="BAAI/bge-small-en-v1.5", https=True ):
|
|
|
|
def __init__(self, api_key: str, host: str, port: int = 6333, collection_name: str = "qdrant", model_name: str = "BAAI/bge-small-en-v1.5", https: bool = True):
|
|
|
|
self.client = QdrantClient(url=host, port=port, api_key=api_key) #, port=port, api_key=api_key, https=False
|
|
|
|
try:
|
|
|
|
self.collection_name = collection_name
|
|
|
|
self.client = QdrantClient(url=host, port=port, api_key=api_key)
|
|
|
|
self._load_embedding_model(model_name)
|
|
|
|
self.collection_name = collection_name
|
|
|
|
self._setup_collection()
|
|
|
|
self._load_embedding_model(model_name)
|
|
|
|
|
|
|
|
self._setup_collection()
|
|
|
|
|
|
|
|
except RequestError as e:
|
|
|
|
|
|
|
|
print(f"Error setting up QdrantClient: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
def _load_embedding_model(self, model_name: str):
|
|
|
|
def _load_embedding_model(self, model_name: str):
|
|
|
|
try:
|
|
|
|
try:
|
|
|
|